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PRAISE FOR THE LINUX PROGRAMMING INTERFACE

“If I had to choose a single book to sit next to my machine when writing
software for Linux, this would be it.”
—MARTIN LANDERS, SOFTWARE ENGINEER, GOOGLE

“This book, with its detailed descriptions and examples, contains everything
you need to understand the details and nuances of the low-level programming
APIs in Linux . . . no matter what the level of reader, there will be something
to be learnt from this book.”

—MEL GORMAN, AUTHOR OF Understanding the Linux Virtual Memory Manager

“Michael Kerrisk has not only written a great book about Linux programming
and how it relates to various standards, but has also taken care that bugs he
noticed got fixed and the man pages were (greatly) improved. In all three
ways, he has made Linux programming easier. The in-depth treatment of
topics in The Linux Programming Interface . . . makes it a must-have reference
for both new and experienced Linux programmers.”

—ANDREAS JAEGER, PROGRAM MANAGER, OPENSUSE, NOVELL

“Michael’s inexhaustible determination to get his information right, and to
express it clearly and concisely, has resulted in a strong reference source for
programmers. While this work is targeted at Linux programmers, it will be of
value to any programmer working in the UNIX/POSIX ecosystem.”
—DAVID BUTENHOF, AUTHOR OF Programming with POSIX Threads AND
CONTRIBUTOR TO THE POSIX AND UNIX STANDARDS

“...avery thorough—yet easy to read—explanation of UNIX system and
network programming, with an emphasis on Linux systems. It’s certainly a
book I'd recommend to anybody wanting to get into UNIX programming
(in general) or to experienced UNIX programmers wanting to know ‘what’s
new’ in the popular GNU/Linux system.”

—FERNANDO GONT, NETWORK SECURITY RESEARCHER, IETF PARTICIPANT, AND
RFC AUTHOR



“. .. encyclopedic in the breadth and depth of its coverage, and textbook-
like in its wealth of worked examples and exercises. Each topic is clearly
and comprehensively covered, from theory to hands-on working code.
Professionals, students, educators, this is the Linux/UNIX reference that
you have been waiting for.”

—ANTHONY ROBINS, ASSOCIATE PROFESSOR OF COMPUTER SCIENCE, THE
UNIVERSITY OF OTAGO

“I’ve been very impressed by the precision, the quality and the level of detail
Michael Kerrisk put in his book. He is a great expert of Linux system calls
and lets us share his knowledge and understanding of the Linux APIs.”
—CHRISTOPHE BLAESS, AUTHOR OF Programmation systeme en C sous Linux
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‘... an essential resource for the serious or professional Linux and UNIX
systems programmer. Michael Kerrisk covers the use of all the key APIs
across both the Linux and UNIX system interfaces with clear descriptions
and tutorial examples and stresses the importance and benefits of following
standards such as the Single UNIX Specification and POSIX 1003.1.”
—ANDREW JOSEY, DIRECTOR, STANDARDS, THE OPEN GROUP, AND CHAIR OF
THE POSIX 1003.1 WORKING GROUP

“What could be better than an encyclopedic reference to the Linux system,
from the standpoint of the system programmer, written by none other than
the maintainer of the man pages himself? The Linux Programming Interface is
comprehensive and detailed. I firmly expect it to become an indispensable
addition to my programming bookshelf.”

—BILL GALLMEISTER, AUTHOR OF POSIX.4 Programmer’s Guide: Programming for
the Real World

“. .. the most complete and up-to-date book about Linux and UNIX system
programming. If you’re new to Linux system programming, if you’re a UNIX
veteran focused on portability while interested in learning the Linux way,
or if you’re simply looking for an excellent reference about the Linux pro-
gramming interface, then Michael Kerrisk’s book is definitely the companion
you want on your bookshelf.”

—Loic DOMAIGNE, CHIEF SOFTWARE ARCHITECT (EMBEDDED), CORPULS.COM
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PREFACE

Subject

In this book, I describe the Linux programming interface—the system calls, library
functions, and other low-level interfaces provided by Linux, a free implementation
of the UNIX operating system. These interfaces are used, directly or indirectly, by
every program that runs on Linux. They allow applications to perform tasks such as
file I/O, creating and deleting files and directories, creating new processes, executing
programs, setting timers, communicating between processes and threads on the
same computer, and communicating between processes residing on different
computers connected via a network. This set of low-level interfaces is sometimes
also known as the system programming interface.

Although I focus on Linux, I give careful attention to standards and portability
issues, and clearly distinguish the discussion of Linux-specific details from the dis-
cussion of features that are common to most UNIX implementations and standardized
by POSIX and the Single UNIX Specification. Thus, this book also provides a com-
prehensive description of the UNIX/POSIX programming interface and can be
used by programmers writing applications targeted at other UNIX systems or
intended to be portable across multiple systems.
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Intended audience

This book is aimed primarily at the following audience:

e programmers and software designers building applications for Linux, other
UNIX systems, or other POSIX-conformant systems;

e programmers porting applications between Linux and other UNIX implemen-
tations or between Linux and other operating systems;

e instructors and advanced students teaching or learning Linux or UNIX system
programming; and

e system managers and “power users” wishing to gain a greater understanding of
the Linux/UNIX programming interface and of how various pieces of system
software are implemented.

I assume you have some prior programming experience, but no previous system
programming experience is required. I also assume you have a reading knowledge
of the C programming language, and know how to use the shell and common Linux
or UNIX commands. If you are new to Linux or UNIX, you will find it helpful to
read the programmer-oriented review of fundamental concepts of Linux and UNIX
systems in Chapter 2.

The standard tutorial reference for C is [Kernighan & Ritchie, 1988]. [Harbison
& Steele, 2002] goes into even more detail on C, and includes coverage of
changes introduced with the C99 standard. [van der Linden, 1994] is an alter-
native look at C that is both highly amusing and instructive. [Peek et al., 2001]
provides a good, brief introduction to using a UNIX system.

Throughout this book, indented small-font paragraphs like these are used
for asides containing rationale, implementation details, background informa-
tion, historical notes, and other topics that are ancillary to the main text.

Linux and UNIX

This book could have been purely about standard UNIX (that is, POSIX) system
programming because most features found on other UNIX implementations are
also present on Linux and vice versa. However, while writing portable applications
is a worthy goal, it is also important to describe Linux extensions to the standard
UNIX programming interface. One reason for this is the popularity of Linux.
Another is that the use of nonstandard extensions is sometimes essential, either for
performance reasons or to access functionality that is unavailable in the standard
UNIX programming interface. (All UNIX implementations provide nonstandard
extensions for these reasons.)

Therefore, while I've designed this book to be useful to programmers working
with all UNIX implementations, I also provide full coverage of programming fea-
tures that are specific to Linux. These features include:

e epoll, a mechanism for obtaining notification of file I/O events;

e inotify, a mechanism for monitoring changes in files and directories;

e capabilities, a mechanism for granting a process a subset of the powers of the
superuser;
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extended attributes;
i-node flags;

the clone() system call;
the /proc file system; and

Linux-specific details of the implementation of file 1/O, signals, timers,
threads, shared libraries, interprocess communication, and sockets.

Usage and organization

You can use this book in at least two ways:

As a tutorial introduction to the Linux/UNIX programming interface. You can
read the book linearly. Later chapters build on material presented in earlier
chapters, with forward references minimized as far as possible.

As a comprehensive reference to the Linux/UNIX programming interface. An
extensive index and frequent cross-references allow topics to be read in ran-
dom order.

I've grouped the chapters of this book into the following parts:

1.

Background and concepts: history of UNIX, C, and Linux and overview of UNIX
standards (Chapter 1); a programmer-oriented introduction to Linux and
UNIX concepts (Chapter 2); and fundamental concepts for system program-
ming on Linux and UNIX (Chapter 3).

Fundamental features of the system programming interface: file 1/0 (Chapter 4 and
Chapter 5); processes (Chapter 6); memory allocation (Chapter 7); users and
groups (Chapter 8); process credentials (Chapter 9); time (Chapter 10); system
limits and options (Chapter 11); and retrieving system and process information
(Chapter 12).

More advanced features of the system programming interface: file 1/0O buffering
(Chapter 13); file systems (Chapter 14); file attributes (Chapter 15); extended
attributes (Chapter 16); access control lists (Chapter 17); directories and links
(Chapter 18); monitoring file events (Chapter 19); signals (Chapter 20 to Chap-
ter 22); and timers (Chapter 23).

Processes, programs, and threads: process creation, process termination, monitor-
ing child processes, and executing programs (Chapter 24 to Chapter 28); and
POSIX threads (Chapter 29 to Chapter 33).

Advanced process and program topics: process groups, sessions, and job control
(Chapter 34); process priorities and scheduling (Chapter 35); process
resources (Chapter 36); daemons (Chapter 37); writing secure privileged pro-
grams (Chapter 38); capabilities (Chapter 39); login accounting (Chapter 40);
and shared libraries (Chapter 41 and Chapter 42).

Interprocess communication (IPC): IPC overview (Chapter 43); pipes and FIFOs
(Chapter 44); System V IPC—message queues, semaphores, and shared mem-
ory (Chapter 45 to Chapter 48); memory mappings (Chapter 49); virtual memory
operations (Chapter 50); POSIX IPC—message queues, semaphores, and shared
memory (Chapter 51 to Chapter 54); and file locking (Chapter 55).
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7.  Sockets and network programming: IPC and network programming with sockets
(Chapter 56 to Chapter 61).

8. Advanced I/0O topics: terminals (Chapter 62); alternative I/O models (Chapter 63);
and pseudoterminals (Chapter 64).

Example programs

I illustrate the use of most of the interfaces described in this book with short, complete
programs, many of which are designed to allow you to easily experiment from the
command line to see just how various system calls and library functions work.
Consequently, this book contains a lot of example code—around 15,000 lines of C
source code and shell session logs.

Although reading and experimenting with the example programs is a useful
starting point, the most effective way to consolidate the concepts discussed in this
book is to write code, either modifying the example programs to try out your own
ideas or writing new programs.

All of the source code in this book is available for download from the book’s
web site. The source code distribution also includes many additional programs that
don’t appear in the book. The purpose and details of these programs are described
in comments in the source code. Makefiles are provided for building the programs,
and an accompanying README file gives further details about the programs.

The source code is freely redistributable and modifiable under the terms of the
GNU Affero General Public License (Affero GPL) version 3, a copy of which is pro-
vided in the source code distribution.

Exercises

Most chapters conclude with a set of exercises, some of which are suggestions for
various experiments using the provided example programs. Other exercises are
questions relating to concepts discussed in the chapter, and still others are suggestions
for programs you might write in order to consolidate your understanding of the
material. You’ll find solutions to selected exercises in Appendix F.

Standards and portability

Throughout this book, I've taken special care to consider portability issues. You’'ll
find frequent references to relevant standards, especially the combined POSIX.1-2001
and Single UNIX Specification version 3 (SUSv3) standard. You’ll also find details
about changes in the recent revision of that standard, the combined POSIX.1-2008
and SUSv4 standard. (Because SUSv3 was a much larger revision, and it is the
UNIX standard that is in most widespread effect at the time of writing, discussions of
standards in the book are generally framed in terms of SUSv3, with notes on the dif-
ferences in SUSv4. However, you can assume that, except where noted, statements
about specifications in SUSv3 also hold true in SUSv4.)

For features that are not standardized, I indicate the range of differences on
other UNIX implementations. I also highlight those major features of Linux that
are implementation-specific, as well as minor differences between the implementa-
tion of system calls and library functions on Linux and other UNIX implementations.
Where a feature is not indicated as being Linux-specific, you can normally assume
that it is a standard feature that appears on most or all UNIX implementations.
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I've tested most of the example programs presented in this book (other than
those that exploit features that are noted as being Linux-specific) on some or all of
Solaris, FreeBSD, Mac OS X, Tru64 UNIX, and HP-UX. To improve portability to
some of these systems, the web site for this book provides alternative versions of
certain example programs with extra code that doesn’t appear in the book.

Linux kernel and C library versions

The primary focus of this book is on Linux 2.6.x, the kernel version in widest use at the
time of writing. Details for Linux 2.4 are also covered, and I've indicated where
features differ between Linux 2.4 and 2.6. Where new features appear in the Linux
2.6.x series, the exact kernel version number of their appearance (e.g., 2.6.34) is noted.

With respect to the C library, the main focus is on the GNU C library (glibc)
version 2. Where relevant, differences across glibc 2.x versions are noted.

As this book was heading to press, Linux kernel version 2.6.35 had just been
released, and glibc version 2.12 had been recently released. This book is current
with respect to both of these software versions. Changes that occur in the Linux
and glibc interfaces after publication of this book will be noted on the book’s
web site.

Using the programming interface from other languages

Although the example programs are written in C, you can use the interfaces described
in this book from other programming languages—for example, compiled languages
such as C++, Pascal, Modula, Ada, FORTRAN, D, and scripting languages such as
Perl, Python, and Ruby. (Java requires a different approach; see, for example,
[Rochkind, 2004].) Different techniques will be required to obtain the necessary
constant definitions and function declarations (except in the case of C++), and some
extra work may be needed to pass function arguments in the manner required by C
linkage conventions. Notwithstanding these differences, the essential concepts are
the same, and you’ll find the information in this book is applicable even if you are
working in another programming language.

About the author

I started using UNIX and C in 1987, when I spent several weeks sitting in front of an
HP Bobcat workstation with a copy of the first edition of Marc Rochkind’s Advanced
UNIX Programming and what ultimately became a very dog-eared printed copy of
the C shell manual page. My approach then was one that I still try to follow today,
and that I recommend to anyone approaching a new software technology: take the
time to read the documentation (if it exists) and write small (but increasingly large)
test programs until you become confident of your understanding of the software.
I've found that, in the long run, this kind of self-training more than pays for itself in
terms of saved time. Many of the programming examples in this book are constructed
in ways that encourage this learning approach.

I’'ve primarily been a software engineer and designer. However, I'm also a passion-
ate teacher, and have spent several years teaching in both academic and commercial
environments. I've run many week-long courses teaching UNIX system programming,
and that experience informs the writing of this book.
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I've been using Linux for about half as long as I've been using UNIX, and, over
that time, my interest has increasingly centered on the boundary between the kernel
and user space: the Linux programming interface. This interest has drawn me into
a number of interrelated activities. I intermittently provide input and bug reports
for the POSIX/SUS standard; I carry out tests and design reviews of new user-space
interfaces added to the Linux kernel (and have helped find and fix many code and
design bugs in those interfaces); I've been a regular speaker at conferences on topics
related to interfaces and their documentation; and I've been invited on a number
of occasions to the annual Linux Kernel Developers Summit. The common thread
tying all of these activities together is my most visible contribution in the Linux
world: my work on the man-pages project (hitp.//www.kernel.org/doc/man-pages/).

The man-pages project provides pages in sections 2, 3, 4, 5, and 7 of the Linux
manual pages. These are the manual pages describing the programming interfaces
provided by the Linux kernel and the GNU C library—the same topic area as this
book. I've been involved with man-pages for more than a decade. Since 2004, I've
been the project maintainer, a task that involves, in roughly equal measure, writing
documentation, reading kernel and library source code, and writing programs to
verify the details for documentation. (Documenting an interface is a great way to
find bugs in that interface.) I've also been the biggest contributor to man-pages—of
the approximately 900 pages in man-pages, I am the author of 140, and the coauthor
of another 125. So, even before you picked up this book, it’s quite likely you've
read some of my published work. I hope that you’ve found that work useful, and
that you’ll find this book even more so.
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Andreas Grunbacher (SUSE Labs) is a kernel hacker and author of the Linux
implementation of extended attributes and POSIX access control lists.
Andreas provided thorough review of many chapters, much encouragement,
and the single comment that probably most changed the structure of the book.

Christoph Hellwig is a Linux storage and file-systems consultant and a well-
known kernel hacker who has worked on many parts of the Linux kernel.
Christoph kindly took time out from writing and reviewing Linux kernel
patches to review several chapters of this book, suggesting many useful correc-
tions and improvements.

Andreas Jaeger led the development of the Linux port to the x86-64 architec-
ture. As a GNU C Library developer, he ported the library to x86-64, and
helped make the library standards-conformant in several areas, especially in
the math library. He is currently Program Manager for openSUSE at Novell.
Andreas reviewed far more chapters than I could possibly have hoped, sug-
gested a multitude of improvements, and warmly encouraged the ongoing
work on the book.

Rick Jones, also known as “Mr. Netperf” (Networked Systems Performance
Curmudgeon at Hewlett-Packard), provided valuable review of the network
programming chapters.

Andi Kleen (then at SUSE Labs) is a well-known and long-term kernel hacker
who has worked on many and diverse areas of the Linux kernel, including net-
working, error handling, scalability, and low-level architecture code. Andi did
an extensive review of the material on network programming, expanded my
knowledge of many details of the Linux TCP/IP implementation, and sug-
gested many ways to improve my presentation of the subject.

Martin Landers (Google) was still a student when I had the good fortune to meet
him as a colleague. Since then, he has managed to pack rather a lot into a short
time, having worked variously as software architect, IT trainer, and profes-
sional hacker. I was fortunate indeed to have Martin as a reviewer. He contributed
numerous incisive comments and corrections that greatly improved many
chapters of the book.

Jamie Lokier is a well-known kernel hacker who has been contributing to Linux
development for 15 years. He nowadays describes himself as “a consultant in
solving difficult problems that often have embedded Linux somewhere.” Jamie
provided an extraordinarily thorough review of the chapters on memory map-
pings, POSIX shared memory, and virtual memory operations. His comments
corrected many details of my understanding of these topics and greatly
improved the structure of the chapters.

Barry Margolin has been a system programmer, system administrator, and support
engineer throughout his 25-year career. He is currently a Senior Performance
Engineer at Akamai Technologies. He is a frequent, well-respected contributor in
various online forums discussing UNIX and Internet topics, and has reviewed a
number of books on these topics. Barry reviewed a number of chapters of this
book, suggesting many improvements.



e Paul Pluzhnikov (Google) was formerly the technical lead and a key developer
of the Insure++ memory-debugging tool. He is also a sometime gdb hacker, and
a frequent responder in online forums answering questions on debugging,
memory allocation, shared libraries, and run-time environments. Paul reviewed a
wide range of chapters, suggesting many valuable improvements.

e John Reiser (with Tom London) carried out one of the earliest ports of UNIX
to a 32-bit architecture: the VAX-11,/780. He is also the creator of the mmap()
system call. John reviewed many chapters (including, obviously, the chapter on
mmap()), providing a multitude of historical insights and crystal-clear technical
explanations that greatly improved the chapters.

e Anthony Robins (Associate Professor of Computer Science, University of
Otago, New Zealand), a close friend of more than three decades, was the first
reader of the drafts of several chapters, and offered valuable early comments
and ongoing encouragement as the project evolved.

e Michael Schroder (Novell) is one of the main authors of the GNU screen pro-
gram, a task that has imbued him with a thorough knowledge of the subtleties and
differences in terminal-driver implementations. Michael reviewed the chapters
covering terminals and pseudoterminals, and the chapter on process groups,
sessions, and job control, providing much useful feedback.

e Manfred Spraul, who worked on the IPC code (among other things) in the
Linux kernel, generously reviewed several of the chapters on IPC and sug-
gested many improvements.

e Tom Swigg, a former UNIX training colleague at Digital, was an early reviewer
who supplied important feedback on several chapters. A software engineer and
IT trainer for more than 25 years, Tom currently works at London South Bank
University, programming and supporting Linux in a VMware environment.

e Jens Thoms Torring is part of a fine tradition of physicists turned programmers,
and has produced a variety of open source device drivers and other software.
Jens read a surprisingly diverse collection of chapters, providing unique and
valuable insight on how each could be improved.

Many other technical reviewers also read various parts of the book and made valuable
comments. In alphabetical order by surname, thank you to George Anzinger
(MontaVista Software), Stefan Becher, Krzysztof Benedyczak, Daniel Brahneborg,
Andries Brouwer, Annabel Church, Dragan Cvetkovic, Floyd L. Davidson, Stuart
Davidson (Hewlett-Packard Consulting), Kasper Dupont, Peter Fellinger (jambit
GmbH), Mel Gorman (IBM), Niels Gollesch, Claus Gratzl, Serge Hallyn (IBM),
Markus Hartinger (jambit GmbH), Richard Henderson (Red Hat), Andrew Josey
(The Open Group), Dan Kegel (Google), Davide Libenzi, Robert Love (Google),
H.]. Lu (Intel Corporation), Paul Marshall, Chris Mason, Michael Matz (SUSE),
Trond Myklebust, James Peach, Mark Phillips (Automated Test Systems), Nick Piggin
(SUSE Labs, Novell), Kay Johannes Potthoff, Florian Rampp, Stephen Rothwell (Linux
Technology Centre, IBM), Markus Schwaiger, Stephen Tweedie (Red Hat), Britta
Vargas, Chris Wright, Michal Wronski, and Umberto Zamuner.
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Thanks to the following people for answering technical questions: Jan Kara,
Dave Kleikamp, and Jon Snader. Thanks to Claus Gratzl and Paul Marshall for system
management assistance.

Thanks to the Linux Foundation (LF), which, during 2008, funded me as a Fellow
to work full time on the man-pages project and on testing and design review of the
Linux programming interface. Although the Fellowship provided no direct finan-
cial support for working on this book, it did keep me and my family fed, and the
ability to focus full time on documenting and testing the Linux programming interface
was a boon to my “private” project. At a more individual level, thanks to Jim Zemlin
for being my “interface” while working at the LF, and to the members of the LF
Technical Advisory Board, who supported my application for the Fellowship.

Thanks to Alejandro Forero Cuervo for suggesting the title of the book!

More than 25 years ago, Robert Biddle intrigued me during my first degree
with tales of UNIX, C, and Ratfor; thank you. Thanks to the following people, who,
although not directly connected with this project, encouraged me on the path of
writing during my second degree at the University of Canterbury, New Zealand:
Michael Howard, Jonathan Mane-Wheoki, Ken Strongman, Garth Fletcher, Jim
Pollard, and Brian Haig.

The late Richard Stevens wrote several superb books on UNIX programming
and TCP/IP, which I, like a multitude of programmers, have found to be a wonder-
ful source of technical information over the years. Readers of those books will note
several visual aspects that are similar between my book and those of Richard Stevens.
This is no accident. As I considered how to design my book, and looked around
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Stevens seemed the best solution, and where this was so, I have employed the same
visual approach.

Thanks to the following people and organizations for providing UNIX systems
that enabled me to run test programs and verify details on other UNIX implemen-
tations: Anthony Robins and Cathy Chandra, for test systems at the University of
Otago, New Zealand; Martin Landers, Ralf Ebner, and Klaus Tilk, for test systems
at the Technische Universitit in Munich, Germany; Hewlett-Packard, for making
their testdrive systems freely available on the Internet; and Paul de Weerd for pro-
viding OpenBSD access.

Heartfelt thanks to two Munich companies, and their owners, who, in addition
to providing me with flexible employment and enjoyable colleagues, were extraor-
dinarily generous in allowing me to use their offices while writing this book.
Thanks to Thomas Kahabka and Thomas Gmelch of exolution GmbH, and, espe-
cially, to Peter Fellinger and Markus Hartinger of jambit GmbH.

Thanks for various kinds of help to the following people: Dan Randow, Karen
Korrel, Claudio Scalmazzi, Michael Schiipbach, and Liz Wright. Thanks to Rob
Suisted and Lynley Cook for the photographs used on the front and back covers.

Thanks to the following people who encouraged and supported me in various
ways on this project: Deborah Church, Doris Church, and Annie Currie.



Thanks to the team at No Starch Press for all sorts of help on an enormous
project. Thanks to Bill Pollock for being straight-talking from the start, having rock-
solid faith in the project, and patiently keeping an eye on the project. Thanks to my
initial production editor, Megan Dunchak. Thanks to my copyeditor, Marilyn Smith,
who, despite my best efforts at clarity and consistency, still found many things to fix.
Riley Hoffman had overall responsibility for layout and design of the book, and
also took up the reins as production editor as we came into the home straight. Riley
graciously bore with my many requests to achieve the right layout and produced a
superb final result. Thank you.

I now know the truth of the cliché that a writer’s family also pays the price of
the writer’s work. Thanks to Britta and Cecilia for their support, and for putting up
with the many hours that I had to be away from family as I finished the book.
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HISTORY AND STANDARDS

Linux is a member of the UNIX family of operating systems. In computing terms,
UNIX has a long history. The first part of this chapter provides a brief outline of
that history. We begin with a description of the origins of the UNIX system and the
C programming language, and then consider the two key currents that led to the
Linux system as it exists today: the GNU project and the development of the Linux
kernel.

One of the notable features of the UNIX system is that its development was not
controlled by a single vendor or organization. Rather, many groups, both commer-
cial and noncommercial, contributed to its evolution. This history resulted in many
innovative features being added to UNIX, but also had the negative consequence
that UNIX implementations diverged over time, so that writing applications that
worked on all UNIX implementations became increasingly difficult. This led to a
drive for standardization of UNIX implementations, which we discuss in the sec-
ond part of this chapter.

Two definitions of the term UNIX are in common use. One of these denotes
operating systems that have passed the official conformance tests for the Sin-
gle UNIX Specification and thus are officially granted the right to be branded
as “UNIX” by The Open Group (the holders of the UNIX trademark). At the
time of writing, none of the free UNIX implementations (e.g., Linux and
FreeBSD) has obtained this branding.



The other common meaning attached to the term UNIX denotes those
systems that look and behave like classical UNIX systems (i.e., the original Bell
Laboratories UNIX and its later principal offshoots, System V and BSD). By
this definition, Linux is generally considered to be a UNIX system (as are the
modern BSDs). Although we give close attention to the Single UNIX Specifica-
tion in this book, we’ll follow this second definition of UNIX, so that we’ll
often say things such as “Linux, like other UNIX implementations. . ..”

A Brief History of UNIX and C

The first UNIX implementation was developed in 1969 (the same year that Linus
Torvalds was born) by Ken Thompson at Bell Laboratories, a division of the tele-
phone corporation, AT&T. It was written in assembler for a Digital PDP-7 mini-
computer. The name UNIX was a pun on MULTICS (Multiplexed Information and
Computing Service), the name of an earlier operating system project in which AT&T
collaborated with Massachusetts Institute of Technology (MIT) and General Elec-
tric. (AT&T had by this time withdrawn from the project in frustration at its initial
failure to develop an economically useful system.) Thompson drew several ideas
for his new operating system from MULTICS, including a tree-structured file sys-
tem, a separate program for interpreting commands (the shell), and the notion of
files as unstructured streams of bytes.

In 1970, UNIX was rewritten in assembly language for a newly acquired Digital
PDP-11 minicomputer, then a new and powerful machine. Vestiges of this PDP-11
heritage can be found in various names still used on most UNIX implementations,
including Linux.

A short time later, Dennis Ritchie, one of Thompson’s colleagues at Bell Labo-
ratories and an early collaborator on UNIX, designed and implemented the C pro-
gramming language. This was an evolutionary process; C followed an earlier
interpreted language, B. B was initially implemented by Thompson and drew many
of its ideas from a still earlier programming language named BCPL. By 1973, C had
matured to a point where the UNIX kernel could be almost entirely rewritten in
the new language. UNIX thus became one of the earliest operating systems to be
written in a high-level language, a fact that made subsequent porting to other hard-
ware architectures possible.

The genesis of C explains why it, and its descendant C++, have come to be used
so widely as system programming languages today. Previous widely used languages
were designed with other purposes in mind: FORTRAN for mathematical tasks
performed by engineers and scientists; COBOL for commercial systems processing
streams of record-oriented data. C filled a hitherto empty niche, and unlike FOR-
TRAN and COBOL (which were designed by large committees), the design of C
arose from the ideas and needs of a few individuals working toward a single goal:
developing a high-level language for implementing the UNIX kernel and associated
software. Like the UNIX operating system itself, C was designed by professional
programmers for their own use. The resulting language was small, efficient, power-
ful, terse, modular, pragmatic, and coherent in its design.
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UNIX First through Sixth editions

Between 1969 and 1979, UNIX went through a number of releases, known as editions.
Essentially, these releases were snapshots of the evolving development version at
AT&T. [Salus, 1994] notes the following dates for the first six editions of UNIX:

e  First Edition, November 1971: By this time, UNIX was running on the PDP-11
and already had a FORTRAN compiler and versions of many programs still
used today, including ar, cat, chmod, chown, cp, dc, ed, find, In, ls, mail, mkdir, mv,
rm, sh, su, and who.

e Second Edition, June 1972: By this time, UNIX was installed on ten machines
within AT&T.

e Third Edition, February 1973: This edition included a C compiler and the first
implementation of pipes.

e Fourth Edition, November 1973: This was the first version to be almost totally
written in C.

o  Fifth Edition, June 1974: By this time, UNIX was installed on more than 50 systems.

e Sixth Edition, May 1975: This was the first edition to be widely used outside
AT&T.

Over the period of these releases, the use and reputation of UNIX began to spread,
first within AT&T, and then beyond. An important contribution to this growing
awareness was the publication of a paper on UNIX in the widely read journal
Communications of the ACM ([Ritchie & Thompson, 1974]).

At this time, AT&T held a government-sanctioned monopoly on the US tele-
phone system. The terms of AT&T’s agreement with the US government prevented
it from selling software, which meant that it could not sell UNIX as a product.
Instead, beginning in 1974 with Fifth Edition, and especially with Sixth Edition,
AT&T licensed UNIX for use in universities for a nominal distribution fee. The
university distributions included documentation and the kernel source code (about
10,000 lines at the time).

AT&T’s release of UNIX into universities greatly contributed to the popularity
and use of the operating system, and by 1977, UNIX was running at some 500 sites,
including 125 universities in the United States and several other countries. UNIX
offered universities an interactive multiuser operating system that was cheap yet
powerful, at a time when commercial operating systems were very expensive. It also
gave university computer science departments the source code of a real operating
system, which they could modify and offer to their students to learn from and
experiment with. Some of these students, armed with UNIX knowledge, became
UNIX evangelists. Others went on to found or join the multitude of startup compa-
nies selling inexpensive computer workstations running the easily ported UNIX
operating system.

The birth of BSD and System V

January 1979 saw the release of Seventh Edition UNIX, which improved the reli-
ability of the system and provided an enhanced file system. This release also con-
tained a number of new tools, including awk, make, sed, tar, uucp, the Bourne shell,
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and a FORTRAN 77 compiler. The release of Seventh Edition is also significant
because, from this point, UNIX diverged into two important variants: BSD and Sys-
tem V, whose origins we now briefly describe.

Thompson spent the 1975/1976 academic year as a visiting professor at the
University of California at Berkeley, the university from which he had graduated.
There, he worked with several graduate students, adding many new features to
UNIX. (One of these students, Bill Joy, subsequently went on to cofound Sun
Microsystems, an early entry in the UNIX workstation market.) Over time, many
new tools and features were developed at Berkeley, including the C shell, the vi edi-
tor, an improved file system (the Berkeley Fast File System), sendmail, a Pascal com-
piler, and virtual memory management on the new Digital VAX architecture.

Under the name Berkeley Software Distribution (BSD), this version of UNIX,
including its source code, came to be widely distributed. The first full distribution
was 3BSD in December 1979. (Earlier releases from Berkeley—BSD and 2BSD—
were distributions of new tools produced at Berkeley, rather than complete UNIX
distributions.)

In 1983, the Computer Systems Research Group at the University of California at
Berkeley released 4.2BSD. This release was significant because it contained a com-
plete TCP/IP implementation, including the sockets application programming
interface (API) and a variety of networking tools. 4.2BSD and its predecessor
4.1BSD became widely distributed within universities around the world. They also
formed the basis for SunOS (first released in 1983), the UNIX variant sold by Sun.
Other significant BSD releases were 4.3BSD, in 1986, and the final release, 4.4BSD,
in 1993.

The very first ports of the UNIX system to hardware other than the PDP-11
occurred during 1977 and 1978, when Dennis Ritchie and Steve Johnson
ported it to the Interdata 8/32 and Richard Miller at the University of Wollon-
gong in Australia simultaneously ported it to the Interdata 7/32. The Berkeley
Digital VAX port was based on an earlier (1978) port by John Reiser and Tom
London. Known as 32V, this port was essentially the same as Seventh Edition
for the PDP-11, except for the larger address space and wider data types.

In the meantime, US antitrust legislation forced the breakup of AT&T (legal
maneuvers began in the mid-1970s, and the breakup became effective in 1982),
with the consequence that, since it no longer held a monopoly on the telephone
system, the company was permitted to market UNIX. This resulted in the release of
System III (three) in 1981. System III was produced by AT&T’s UNIX Support
Group (USG), which employed many hundreds of developers to enhance UNIX
and develop UNIX applications (notably, document preparation packages and soft-
ware development tools). The first release of System V (five) followed in 1983, and
a series of releases led to the definitive System V Release 4 (SVR4) in 1989, by
which time System V had incorporated many features from BSD, including net-
working facilities. System V was licensed to a variety of commercial vendors, who
used it as the basis of their UNIX implementations.

Thus, in addition to the various BSD distributions spreading through aca-
demia, by the late 1980s, UNIX was available in a range of commercial implementa-
tions on various hardware. These implementations included Sun’s SunOS and later
Solaris, Digital’s Ultrix and OSF/1 (nowadays, after a series of renamings and
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acquisitions, HP Tru64 UNIX), IBM’s AIX, Hewlett-Packard’s (HP’s) HP-UX,
NeXT’s NeXTStep, A/UX for the Apple Macintosh, and Microsoft and SCO’s
XENIX for the Intel x86-32 architecture. (Throughout this book, the Linux imple-
mentation for x86-32 is referred to as Linux/x86-32.) This situation was in sharp
contrast to the typical proprietary hardware/operating system scenarios of the
time, where each vendor produced one, or at most a few, proprietary computer
chip architectures, on which they sold their own proprietary operating system(s).
The proprietary nature of most vendor systems meant that purchasers were locked
into one vendor. Switching to another proprietary operating system and hardware
platform could become very expensive because of the need to port existing applica-
tions and retrain staff. This factor, coupled with the appearance of cheap single-
user UNIX workstations from a variety of vendors, made the portable UNIX system
increasingly attractive from a commercial perspective.

A Brief History of Linux

The term Linux is commonly used to refer to the entire UNIX-like operating sys-
tem of which the Linux kernel forms a part. However, this is something of a misno-
mer, since many of the key components contained within a typical commercial
Linux distribution actually originate from a project that predates the inception
of Linux by several years.

The GNU Project

In 1984, Richard Stallman, an exceptionally talented programmer who had been
working at MIT, set to work on creating a “free” UNIX implementation. Stallman’s
outlook was a moral one, and free was defined in a legal sense, rather than a finan-
cial sense (see hitp://www.gnu.org/philosophy/free-sw.html). Nevertheless, the legal
freedom that Stallman described carried with it the implicit consequence that soft-
ware such as operating systems would be available at no or very low cost.

Stallman militated against the legal restrictions placed on proprietary operat-
ing systems by computer vendors. These restrictions meant that purchasers of com-
puter software in general could not see the source code of the software they were
buying, and they certainly could not copy, change, or redistribute it. He pointed
out that such a framework encouraged programmers to compete with each other
and hoard their work, rather than to cooperate and share it.

In response, Stallman started the GNU project (a recursively defined acronym
for “GNU’s not UNIX”) to develop an entire, freely available, UNIX-like system,
consisting of a kernel and all associated software packages, and encouraged others
to join him. In 1985, Stallman founded the Free Software Foundation (FSF), a non-
profit organization to support the GNU project as well as the development of free
software in general.

When the GNU project was started, BSD was not free in the sense that Stall-
man meant. Use of BSD still required a license from AT&T, and users could
not freely modify and redistribute the AT&T code that formed part of BSD.

One of the important results of the GNU project was the development of the GNU
General Public License (GPL), the legal embodiment of Stallman’s notion of free
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software. Much of the software in a Linux distribution, including the kernel, is
licensed under the GPL or one of a number of similar licenses. Software licensed
under the GPL must be made available in source code form, and must be freely
redistributable under the terms of the GPL. Modifications to GPL-licensed soft-
ware are freely permitted, but any distribution of such modified software must also
be under the terms of the GPL. If the modified software is distributed in execut-
able form, the author must also allow any recipients the option of obtaining the
modified source for no more than the cost of distribution. The first version of the
GPL was released in 1989. The current version of the license, version 3, was
released in 2007. Version 2 of the license, released in 1991, remains in wide use,
and is the license used for the Linux kernel. (Discussions of various free software
licenses can be found in [St. Laurent, 2004] and [Rosen, 2005].)

The GNU project did not initially produce a working UNIX kernel, but did
produce a wide range of other programs. Since these programs were designed to
run on a UNIX-like operating system, they could be, and were, used on existing
UNIX implementations and, in some cases, even ported to other operating sys-
tems. Among the more well-known programs produced by the GNU project are the
Emacs text editor, GCC (originally the GNU C compiler, but now renamed the
GNU compiler collection, comprising compilers for C, C++, and other languages),
the bash shell, and glibc (the GNU C library).

By the early 1990s, the GNU project had produced a system that was virtually
complete, except for one important component: a working UNIX kernel. The GNU
project had started work on an ambitious kernel design, known as the GNU/HURD,
based on the Mach microkernel. However, the HURD was far from being in a form
that could be released. (At the time of writing, work continues on the HURD,
which currently runs only on the x86-32 architecture.)

Because a significant part of the program code that constitutes what is com-
monly known as the Linux system actually derives from the GNU project, Stall-
man prefers to use the term GNU/Linux to refer to the entire system. The
question of naming (Linux versus GNU/Linux) is the source of some debate
in the free software community. Since this book is primarily concerned with
the API of the Linux kernel, we’ll generally use the term Linux.

The stage was set. All that was required was a working kernel to go with the other-
wise complete UNIX system already produced by the GNU project.

The Linux Kernel

In 1991, Linus Torvalds, a Finnish student at the University of Helsinki, was
inspired to write an operating system for his Intel 80386 PC. In the course of his
studies, Torvalds had come into contact with Minix, a small UNIX-like operating
system kernel developed in the mid-1980s by Andrew Tanenbaum, a university pro-
fessor in Holland. Tanenbaum made Minix, complete with source code, available
as a tool for teaching operating system design in university courses. The Minix ker-
nel could be built and run on a 386 system. However, since its primary purpose was
as a teaching tool, it was designed to be largely independent of the hardware archi-
tecture, and it did not take full advantage of the 386 processor’s capabilities.

6 Chapter 1



Torvalds therefore started on a project to create an efficient, full-featured
UNIX kernel to run on the 386. Over a few months, Torvalds developed a basic
kernel that allowed him to compile and run various GNU programs. Then, on
October 5, 1991, Torvalds requested the help of other programmers, making the
following now much-quoted announcement of version 0.02 of his kernel in the
comp.os.minix Usenet newsgroup:

Do you pine for the nice days of Minix-1.1, when men were men
and wrote their own device drivers? Are you without a nice
project and just dying to cut your teeth on a OS you can try to
modify for your needs? Are you finding it frustrating when
everything works on Minix? No more all-nighters to get a nifty
program working? Then this post might be just for you. As I
mentioned a month ago, I'm working on a free version of a
Minix-look-alike for AT-386 computers. It has finally reached the
stage where it’s even usable (though may not be depending on
what you want), and I am willing to put out the sources for wider
distribution. It is just version 0.02 ... but I've successfully run
bash, gcc, gnu-make, gnu-sed, compress, etc. under it.

Following a time-honored tradition of giving UNIX clones names ending with the
letter X, the kernel was (eventually) baptized Linux. Initially, Linux was placed
under a more restrictive license, but Torvalds soon made it available under the
GNU GPL.

The call for support proved effective. Other programmers joined Torvalds in
the development of Linux, adding various features, such as an improved file
system, networking support, device drivers, and multiprocessor support. By
March 1994, the developers were able to release version 1.0. Linux 1.2 appeared
in March 1995, Linux 2.0 in June 1996, Linux 2.2 in January 1999, and Linux 2.4 in
January 2001. Work on the 2.5 development kernel began in November 2001, and
led to the release of Linux 2.6 in December 2003.

An aside: the BSDs

It is worth noting that another free UNIX was already available for the x86-32 dur-
ing the early 1990s. Bill and Lynne Jolitz had developed a port of the already
mature BSD system for the x86-32, known as 386,/BSD. This port was based on the
BSD Net/2 release (June 1991), a version of the 4.3BSD source code in which all
remaining proprietary AT&T source code had either been replaced or, in the case
of six source code files that could not be trivially rewritten, removed. The Jolitzes
ported the Net/2 code to x86-32, rewrote the missing source files, and made the
first release (version 0.0) of 386/BSD in February 1992.

After an initial wave of success and popularity, work on 386/BSD lagged
for various reasons. In the face of an increasingly large backlog of patches, two
alternative development groups soon appeared, creating their own releases based
on 386/BSD: NetBSD, which emphasizes portability to a wide range of hardware
platforms, and FreeBSD, which emphasizes performance and is the most wide-
spread of the modern BSDs. The first NetBSD release was 0.8, in April 1993. The
first FreeBSD CD-ROM (version 1.0) appeared in December 1993. Another BSD,
OpenBSD, appeared in 1996 (as an initial version numbered 2.0) after forking
from the NetBSD project. OpenBSD emphasizes security. In mid-2003, a new BSD,
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DragonFly BSD, appeared after a split from FreeBSD 4.x. Dragonkly BSD takes a
different approach from FreeBSD 5.x with respect to design for symmetric multi-
processing (SMP) architectures.

Probably no discussion of the BSDs in the early 1990s is complete without men-
tion of the lawsuits between UNIX System Laboratories (USL, the AT&T subsidiary
spun off to develop and market UNIX) and Berkeley. In early 1992, the company
Berkeley Software Design, Incorporated (BSDi, nowadays part of Wind River)
began distributing a commercially supported BSD UNIX, BSD/OS, based on the
Net/2 release and the Jolitzes’ 386/BSD additions. BSDi distributed binaries and
source code for $995 (US dollars), and advised potential customers to use their
telephone number 1-800-ITS-UNIX.

In April 1992, USL filed suit against BSDi in an attempt to prevent BSDi from
selling a product that USL claimed was still encumbered by proprietary USL source
code and trade secrets. USL also demanded that BSDi cease using the deceptive
telephone number. The suit was eventually widened to include a claim against the
University of California. The court ultimately dismissed all but two of USL’s claims,
and a countersuit by the University of California against USL ensued, in which the
university claimed that USL had not given due credit for the use of BSD code in
System V.

While these suits were pending, USL was acquired by Novell, whose CEO, the
late Ray Noorda, stated publicly that he would prefer to compete in the market-
place rather than in the court. Settlement was finally reached in January 1994, with
the University of California being required to remove 3 of the 18,000 files in the
Net/2 release, make some minor changes to a few other files, and add USL copy-
right notices to around 70 other files, which the university nevertheless could
continue to distribute freely. This modified system was released as 4.4BSD-Lite
in June 1994. (The last release from the university was 4.4BSD-Lite, Release 2 in
June 1995.) At this point, the terms of the legal settlement required BSDi,
FreeBSD, and NetBSD to replace their Net/2 base with the modified 4.4BSD-Lite
source code. As [McKusick et al., 1996] notes, although this caused some delay in
the development of the BSD derivatives, it also had the positive effect that these
systems resynchronized with the three years of development work done by the uni-
versity’s Computer Systems Research Group since the release of Net/2.

Linux kernel version numbers

Like most free software projects, Linux follows a release-early, release-often model,
so that new kernel revisions appear frequently (sometimes even daily). As the
Linux user base increased, the release model was adapted to decrease disruption to
existing users. Specifically, following the release of Linux 1.0, the kernel developers
adopted a kernel version numbering scheme with each release numbered x.y.z: x
representing a major version, y a minor version within that major version, and z a
revision of the minor version (minor improvements and bug fixes).

Under this model, two kernel versions were always under development: a stable
branch for use on production systems, which had an even minor version number,
and a more volatile development branch, which carried the next higher odd minor
version number. The theory—not always followed strictly in practice—was that all
new features should be added in the current development kernel series, while new
revisions in the stable kernel series should be restricted to minor improvements
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and bug fixes. When the current development branch was deemed suitable for
release, it became the new stable branch and was assigned an even minor version
number. For example, the 2.3.z development kernel branch resulted in the 2.4
stable kernel branch.

Following the 2.6 kernel release, the development model was changed. The
main motivation for this change arose from problems and frustrations caused by
the long intervals between stable kernel releases. (Nearly three years passed
between the release of Linux 2.4.0 and 2.6.0.) There have periodically been discus-
sions about fine-tuning this model, but the essential details have remained as follows:

e There is no longer a separation between stable and development kernels. Each
new 2.6.z release can contain new features, and goes through a life cycle that
begins with the addition of new features, which are then stabilized over the
course of a number of candidate release versions. When a candidate version is
deemed sufficiently stable, it is released as kernel 2.6.z. Release cycles are typi-
cally about three months long.

e Sometimes, a stable 2.6.z release may require minor patches to fix bugs or secu-
rity problems. If these fixes have a sufficiently high priority, and the patches
are deemed simple enough to be “obviously” correct, then, rather than waiting
for the next 2.6.z release, they are applied to create a release with a number of
the form 2.6.z.7, where r is a sequential number for a minor revision of this
2.6.z kernel.

e Additional responsibility is shifted onto distribution vendors to ensure the sta-
bility of the kernel provided with a distribution.

Later chapters will sometimes note the kernel version in which a particular API
change (i.e., new or modified system call) occurred. Although, prior to the 2.6.z
series, most kernel changes occurred in the odd-numbered development branches,
we’ll generally refer to the following stable kernel version in which the change
appeared, since most application developers would normally be using a stable ker-
nel, rather than one of the development kernels. In many cases, the manual pages
note the precise development kernel in which a particular feature appeared or
changed.

For changes that appear in the 2.6.z kernel series, we note the precise kernel
version. When we say that a feature is new in kernel 2.6, without a z revision num-
ber, we mean a feature that was implemented in the 2.5 development kernel series
and first appeared in the stable kernel at version 2.6.0.

At the time of writing, the 2.4 stable Linux kernel is still supported by main-
tainers who incorporate essential patches and bug fixes, and periodically
release new revisions. This allows installed systems to continue to use 2.4 ker-
nels, rather than being forced to upgrade to a new kernel series (which may
entail significant work in some cases).

Ports to other hardware architectures

During the initial development of Linux, efficient implementation on the Intel
80386 was the primary goal, rather than portability to other processor architec-
tures. However, with the increasing popularity of Linux, ports to other processor
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architectures began to appear, starting with an early port to the Digital Alpha chip.
The list of hardware architectures to which Linux has been ported continues to grow
and includes x86-64, Motorola/IBM PowerPC and PowerPC64, Sun SPARC and
SPARC64 (UltraSPARC), MIPS, ARM (Acorn), IBM zSeries (formerly System,/390),
Intel 1A-64 (Itanium; see [Mosberger & Eranian, 2002]), Hitachi SuperH, HP
PA-RISC, and Motorola 68000.

Linux distributions

Precisely speaking, the term Linux refers just to the kernel developed by Linus Torvalds
and others. However, the term Linux is commonly used to mean the kernel, plus a
wide range of other software (tools and libraries) that together make a complete
operating system. In the very early days of Linux, the user was required to assemble
all of this software, create a file system, and correctly place and configure all of the
software on that file system. This demanded considerable time and expertise. As a
result, a market opened for Linux distributors, who created packages (distributions)
to automate most of the installation process, creating a file system and installing
the kernel and other required software.

The earliest distributions appeared in 1992, and included MCC Interim Linux
(Manchester Computing Centre, UK), TAMU (Texas A&M University), and SLS
(SoftLanding Linux System). The oldest surviving commercial distribution, Slackware,
appeared in 1993. The noncommercial Debian distribution appeared at around
the same time, and SUSE and Red Hat soon followed. The currently very popular
Ubuntu distribution first appeared in 2004. Nowadays, many distribution compa-
nies also employ programmers who actively contribute to existing free software
projects or initiate new projects.

Standardization

By the late 1980s, the wide variety of available UNIX implementations also had its
drawbacks. Some UNIX implementations were based on BSD, others were based
on System V, and some drew features from both variants. Furthermore, each com-
mercial vendor had added extra features to its own implementation. The conse-
quence was that moving software and people from one UNIX implementation to
another became steadily more difficult. This situation created strong pressure for
standardization of the C programming language and the UNIX system, so that
applications could more easily be ported from one system to another. We now look
at the resulting standards.

The C Programming Language

By the early 1980s, C had been in existence for ten years, and was implemented on
a wide variety of UNIX systems and on other operating systems. Minor differences
had arisen between the various implementations, in part because certain aspects of
how the language should function were not detailed in the existing de facto stan-
dard for C, Kernighan and Ritchie’s 1978 book, The C Programming Language. (The
older C syntax described in that book is sometimes called traditional C or K&R C.)
Furthermore, the appearance of C++ in 1985 highlighted certain improvements
and additions that could be made to C without breaking existing programs, notably
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function prototypes, structure assignment, type qualifiers (const and volatile), enu-
meration types, and the void keyword.

These factors created a drive for C standardization that culminated in 1989
with the approval of the American National Standards Institute (ANSI) C standard
(X3.159-1989), which was subsequently adopted in 1990 as an International Stan-
dards Organization (ISO) standard (ISO/IEC 9899:1990). As well as defining the
syntax and semantics of C, this standard described the operation of the standard C
library, which includes the stdio functions, string-handling functions, math func-
tions, various header files, and so on. This version of C is usually known as C89 or
(Iess commonly) ISO C90, and is fully described in the second (1988) edition of Ker-
nighan and Ritchie’s The C Programming Language.

A revision of the C standard was adopted by ISO in 1999 (ISO/IEC 9899:1999;
see http://www.open-std.org/jtc1/sc22/wgl4/www/standards). This standard is usually
referred to as C99, and includes a range of changes to the language and its stan-
dard library. These changes include the addition of long long and Boolean data
types, C++-style (//) comments, restricted pointers, and variable-length arrays. (At
the time of writing, work is in progress on a further revision of the C standard,
informally named C1X. The new standard is expected to be ratified in 2011.)

The C standards are independent of the details of any operating system; that is,
they are not tied to the UNIX system. This means that C programs written using
only the standard C library should be portable to any computer and operating sys-
tem providing a C implementation.

Historically, C89 was often called ANSI C, and this term is sometimes still used
with that meaning. For example, gcc employs that meaning; its —ansi qualifier
means “support all ISO C90 programs.” However, we avoid this term because
it is now somewhat ambiguous. Since the ANSI committee adopted the C99
revision, properly speaking, ANSI C is now C99.

The First POSIX Standards

The term POSIX (an abbreviation of Portable Operating System Interface) refers to a
group of standards developed under the auspices of the Institute of Electrical and
Electronic Engineers (IEEE), specifically its Portable Application Standards Com-
mittee (PASC, http.//www.pasc.org/). The goal of the PASC standards is to promote
application portability at the source code level.

The name POSIX was suggested by Richard Stallman. The final X appears
because the names of most UNIX variants end in X. The standard notes that
the name should be pronounced “pahz-icks,” like “positive.”

The most interesting of the POSIX standards for our purposes are the first POSIX
standard, referred to as POSIX.1 (or, more fully, POSIX 1003.1), and the subse-
quent POSIX.2 standard.

POSIX.1 and POSIX.2

POSIX.1 became an IEEE standard in 1988 and, with minor revisions, was adopted
as an ISO standard in 1990 (ISO/IEC 9945-1:1990). (The original POSIX standards
are not available online, but can be purchased from the IEEE at attp://wwuw.ieee.org/.)
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POSIX.1 was initially based on an earlier (1984) unofficial standard produced
by an association of UNIX vendors called /usr/group.

POSIX.1 documents an API for a set of services that should be made available to a
program by a conforming operating system. An operating system that does this can
be certified as POSIX. I conformant.

POSIX.1 is based on the UNIX system call and the C library function API, but
it doesn’t require any particular implementation to be associated with this inter-
face. This means that the interface can be implemented by any operating system,
not specifically a UNIX operating system. In fact, some vendors have added APIs to
their proprietary operating systems that make them POSIX.1 conformant, while at
the same time leaving the underlying operating system largely unchanged.

A number of extensions to the original POSIX.1 standard were also important.
IEEE POSIX 1003.1b (POSIX.1b, formerly called POSIX.4 or POSIX 1003.4), rati-
fied in 1993, contains a range of realtime extensions to the base POSIX standard.
IEEE POSIX 1003.1c (POSIX.1c), ratified in 1995, is the definition of POSIX
threads. In 1996, a revised version of the POSIX.1 standard (ISO/IEC 9945-1:1996)
was produced, leaving the core text unchanged, but incorporating the realtime and
threads extensions. IEEE POSIX 1003.1g (POSIX.1g) defined the networking APIs,
including sockets. IEEE POSIX 1003.1d (POSIX.1d), ratified in 1999, and POSIX.1j,
ratified in 2000, defined additional realtime extensions to the POSIX base standard.

The POSIX.1b realtime extensions include file synchronization; asynchronous
1/0; process scheduling; high-precision clocks and timers; and interprocess
communication using semaphores, shared memory, and message queues. The
prefix POSIX is often applied to the three interprocess communication meth-
ods to distinguish them from the similar, but older, System V semaphores,
shared memory, and message queues.

A related standard, POSIX.2 (1992, ISO/IEC 9945-2:1993), standardized the
shell and various UNIX utilities, including the command-line interface of the C
compiler.

FIPS 151-1 and FIPS 151-2

FIPS is an abbreviation for Federal Information Processing Standard, the name of
a set of standards specified by the US government for the purchase of its computer
systems. In 1989, FIPS 151-1 was published. This standard was based on the 1988
IEEE POSIX.1 standard and the draft ANSI C standard. The main difference
between FIPS 151-1 and POSIX.1 (1988) was that the FIPS standard required some
features that POSIX.1 left as optional. Because the US government is a major pur-
chaser of computer systems, most computer vendors ensured that their UNIX sys-
tems conformed to the FIPS 151-1 version of POSIX.1.

FIPS 151-2 aligned with the 1990 ISO edition of POSIX.1, but was other-
wise unchanged. The now outdated FIPS 151-2 was withdrawn as a standard in
February 2000.
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X/Open Company and The Open Group

X/Open Company was a consortium formed by an international group of com-
puter vendors to adopt and adapt existing standards in order to produce a compre-
hensive, consistent set of open systems standards. It produced the X/Open
Portability Guide, a series of portability guides based on the POSIX standards. The
first important release of this guide was Issue 3 (XPG3) in 1989, followed by XPG4
in 1992. XPG4 was revised in 1994, which resulted in XPG4 version 2, a standard
that also incorporated important parts of AT&T’s System V Interface Definition
Issue 3, described in Section 1.3.7. This revision was also known as Spec 1170, with
1170 referring to the number of interfaces—functions, header files, and commands—
defined by the standard.

When Novell, which acquired the UNIX systems business from AT&T in early
1993, later divested itself of that business, it transferred the rights to the UNIX
trademark to X/Open. (The plan to make this transfer was announced in 1993, but
legal requirements delayed the transfer until early 1994.) XPG4 version 2 was sub-
sequently repackaged as the Single UNIX Specification (SUS, or sometimes SUSv1),
and is also known as UNIX 95. This repackaging included XPG4 version 2, the
X/Open Curses Issue 4 version 2 specification, and the X/Open Networking Ser-
vices (XNS) Issue 4 specification. Version 2 of the Single UNIX Specification
(SUSV2, http://www.unix.org/version2/online.himl) appeared in 1997, and UNIX
implementations certified against this specification can call themselves UNIX 98.
(This standard is occasionally also referred to as XPGb.)

In 1996, X/Open merged with the Open Software Foundation (OSF) to form The
Open Group. Nearly every company or organization involved with the UNIX system
is now a member of The Open Group, which continues to develop API standards.

OSF was one of two vendor consortia formed during the UNIX wars of the late
1980s. Among others, OSF included Digital, IBM, HP, Apollo, Bull, Nixdorf,
and Siemens. OSF was formed primarily in response to the threat created by a
business alliance between AT&T (the originators of UNIX) and Sun (the most
powerful player in the UNIX workstation market). Consequently, AT&T, Sun,
and other companies formed the rival UNIX International consortium.

SUSv3 and POSIX.1-2001

Beginning in 1999, the IEEE, The Open Group, and the ISO/IEC Joint Technical
Committee 1 collaborated in the Austin Common Standards Revision Group (CSRG,
http.//www.opengroup.org/austin/) with the aim of revising and consolidating the
POSIX standards and the Single UNIX Specification. (The Austin Group is so
named because its inaugural meeting was in Austin, Texas in September 1998.)
This resulted in the ratification of POSIX 1003.1-2001, sometimes just called
POSIX.1-2001, in December 2001 (subsequently approved as an ISO standard,
ISO/IEC 9945:2002).

POSIX 1003.1-2001 replaces SUSv2, POSIX.1, POSIX.2, and a raft of other ear-
lier POSIX standards. This standard is also known as the Single UNIX Specification
Version 3, and we’ll generally refer to it in the remainder of this book as SUSv3.
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The SUSv3 base specifications consists of around 3700 pages, divided into the
following four parts:

e Base Definitions (XBD): This part contains definitions, terms, concepts, and
specifications of the contents of header files. A total of 84 header file specifica-
tions are provided.

o System Interfaces (XSH): This part begins with various useful background infor-
mation. Its bulk consists of the specification of various functions (which are
implemented as either system calls or library functions on specific UNIX imple-
mentations). A total of 1123 system interfaces are included in this part.

o Shell and Utilities (XCU): This specifies the operation of the shell and various
UNIX commands. A total of 160 utilities are specified in this part.

e  Rationale (XRAT): This part includes informative text and justifications relat-
ing to the earlier parts.

In addition, SUSv3 includes the X/Open CURSES Issue 4 Version 2 (XCURSES) spec-
ification, which specifies 372 functions and 3 header files for the curses screen-
handling API.

In all, 1742 interfaces are specified in SUSv3. By contrast, POSIX.1-1990 (with
FIPS 151-2) specified 199 interfaces, and POSIX.2-1992 specified 130 utilities.

SUSv3 is available online at Attp.//www.unix.org/version3/online.html. UNIX
implementations certified against SUSv3 can call themselves UNIX 03.

There have been various minor fixes and improvements for problems discov-
ered since the ratification of the original SUSv3 text. These have resulted in the
appearance of Technical Corrigendum Number 1, whose improvements were incorpo-
rated in a 2003 revision of SUSv3, and Technical Corrigendum Number 2, whose
improvements were incorporated in a 2004 revision.

POSIX conformance, XSI conformance, and the XSI extension

Historically, the SUS (and XPG) standards deferred to the corresponding POSIX
standards and were structured as functional supersets of POSIX. As well as specify-
ing additional interfaces, the SUS standards made mandatory many of the inter-
faces and behaviors that were deemed optional in POSIX.

This distinction survives somewhat more subtly in POSIX 1003.1-2001, which
is both an IEEE standard and an Open Group Technical Standard (i.e., as noted
already, it is a consolidation of earlier POSIX and SUS standards). This document
defines two levels of conformance:

e POSIX conformance: This defines a baseline of interfaces that a conforming
implementation must provide. It permits the implementation to provide other
optional interfaces.

o X/Open System Interface (XSI) conformance: To be XSI conformant, an implemen-
tation must meet all of the requirements of POSIX conformance and also must
provide a number of interfaces and behaviors that are only optionally required
for POSIX conformance. An implementation must reach this level of conform-
ance in order to obtain the UNIX 03 branding from The Open Group.
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The additional interfaces and behaviors required for XSI conformance are collec-
tively known as the XS/ extension. They include support for features such as threads,
mmap() and munmap(), the dlopen API, resource limits, pseudoterminals, System V
IPC, the syslog API, poll(), and login accounting.

In later chapters, when we talk about SUSv3 conformance, we mean XSI
conformance.

Because POSIX and SUSv3 are now part of the same document, the additional
interfaces and the selection of mandatory options required for SUSv3 are indi-
cated via the use of shading and margin markings within the document text.

Unspecified and weakly specified

Occasionally, we refer to an interface as being “unspecified” or “weakly specified”
within SUSv3.

By an unspecified interface, we mean one that is not defined at all in the formal
standard, although in a few cases there are background notes or rationale text that
mention the interface.

Saying that an interface is weakly specified is shorthand for saying that, while the
interface is included in the standard, important details are left unspecified (com-
monly because the committee members could not reach an agreement due to dif-
ferences in existing implementations).

When using interfaces that are unspecified or weakly specified, we have few
guarantees when porting applications to other UNIX implementations. Neverthe-
less, in a few cases, such an interface is quite consistent across implementations,
and where this is so, we generally note it as such.

LEGACY features

Sometimes, we note that SUSv3 marks a specified feature as LEGACY. This term
denotes a feature that is retained for compatibility with older applications, but
whose limitations mean that its use should be avoided in new applications. In many
cases, some other API exists that provides equivalent functionality.

SUSv4 and POSIX.1-2008

In 2008, the Austin group completed a revision of the combined POSIX.1 and
Single UNIX Specification. As with the preceding version of the standard, it con-
sists of a base specification coupled with an XSI extension. We’ll refer to this revi-
sion as SUSv4.

The changes in SUSv4 are less wide-ranging than those that occurred for
SUSv3. The most significant changes are as follows:

e SUSv4 adds new specifications for a range of functions. Among the newly spec-
ified functions that we mention in this book are dirfd(), fdopendir(), fexecve(),
Sfutimens(), mkdtemp(), psignal(), strsignal(), and utimensat(). Another range of
new file-related functions (e.g., openat(), described in Section 18.11) are ana-
logs of existing functions (e.g., open()), but differ in that they interpret relative
pathnames with respect to the directory referred to by an open file descriptor,
rather than relative to the process’s current working directory.
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e Some functions specified as options in SUSv3 become a mandatory part of the
base standard in SUSv4. For example, a number of functions that were part of
the XSI extension in SUSv3 become part of the base standard in SUSv4.
Among the functions that become mandatory in SUSv4 are those in the dlopen
API (Section 42.1), the realtime signals API (Section 22.8), the POSIX sema-
phore API (Chapter 53), and the POSIX timers API (Section 23.6).

e Some functions in SUSv3 are marked as obsolete in SUSv4. These include
asctime(), ctime(), ftw(), gettimeofday(), getitimer(), setitimer(), and siginterrupt().

e Specifications of some functions that were marked as obsolete in SUSv3 are
removed in SUSv4. These functions include gethostbyname(), gethostbyaddr(), and
vfork().

e Various details of existing specifications in SUSv3 are changed in SUSv4. For
example, various functions are added to the list of functions that are required
to be async-signal-safe (Table 21-1 on page 426).

In the remainder of this book, we note changes in SUSv4 where they are relevant to
the topic being discussed.

UNIX Standards Timeline

Figure 1-1 summarizes the relationships between the various standards described
in the preceding sections, and places the standards in chronological order. In this
diagram, the solid lines indicate direct descent between standards, and the dashed
arrows indicate cases where one standard influenced another standard, was incor-
porated as part of another standard, or simply deferred to another standard.

The situation with networking standards is somewhat complex. Standardiza-
tion efforts in this area began in the late 1980s with the formation of the POSIX
1003.12 committee to standardize the sockets API, the X/Open Transport Inter-
face (XTI) API (an alternative network programming API based on System V’s
Transport Layer Interface), and various associated APIs. The gestation of this stan-
dard occurred over several years, during which time POSIX 1003.12 was renamed
POSIX 1003.1g. It was ratified in 2000.

In parallel with the development of POSIX 1003.1g, X/Open was also develop-
ing its X/Open Networking Specification (XNS). The first version of this specifica-
tion, XNS Issue 4, was part of the first version of the Single UNIX Specification. It
was succeeded by XNS Issue 5, which formed part of SUSv2. XNS Issue 5 was essen-
tially the same as the then current (6.6) draft of POSIX.1g. This was followed by
XNS Issue 5.2, which differed from XNS Issue 5 and the ratified POSIX.1g stan-
dard in marking the XTI API as obsolete and in including coverage of Internet Pro-
tocol version 6 (IPv6), which was being designed in the mid-1990s). XNS Issue 5.2
formed the basis for the networking material included in SUSv3, and is thus now
superseded. For similar reasons, POSIX.1g was withdrawn as a standard soon after
it was ratified.
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Figure 1-1: Relationships between various UNIX and C standards

Implementation Standards

In addition to the standards produced by independent or multiparty groups, refer-
ence is sometimes made to the two implementation standards defined by the final
BSD release (4.4BSD) and AT&T’s System V Release 4 (SVR4). The latter imple-
mentation standard was formalized by AT&T’s publication of the System V Inter-
face Definition (SVID). In 1989, AT&T published Issue 3 of the SVID, which
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defined the interface that a UNIX implementation must provide in order to be able
to call itself System V Release 4. (The SVID is available online at Attp://www.sco.com/
developers/devspecs/.)

Because the behavior of some system calls and library functions varies between
SVR4 and BSD, many UNIX implementations provide compatibility libraries
and conditional-compilation facilities that emulate the behavior of whichever
UNIX flavor is not used as the base for that particular implementation (see
Section 3.6.1). This eases the burden of porting an application from another
UNIX implementation.

Linux, Standards, and the Linux Standard Base

As a general goal, Linux (i.e., kernel, glibc, and tool) development aims to conform
to the various UNIX standards, especially POSIX and the Single UNIX Specifica-
tion. However, at the time of writing, no Linux distributions are branded as
“UNIX” by The Open Group. The problems are time and expense. Each vendor
distribution would need to undergo conformance testing to obtain this branding,
and it would need to repeat this testing with each new distribution release. Never-
theless, it is the de facto near-conformance to various standards that has enabled
Linux to be so successful in the UNIX market.

With most commercial UNIX implementations, the same company both devel-
ops and distributes the operating system. With Linux, things are different, in that
implementation is separate from distribution, and multiple organizations—both
commercial and noncommercial-handle Linux distribution.

Linus Torvalds doesn’t contribute to or endorse a particular Linux distribu-
tion. However, in terms of other individuals carrying out Linux development, the
situation is more complex. Many developers working on the Linux kernel and on
other free software projects are employed by various Linux distribution companies
or work for companies (such as IBM and HP) with a strong interest in Linux. While
these companies can influence the direction in which Linux moves by allocating
programmer hours to certain projects, none of them controls Linux as such. And,
of course, many of the other contributors to the Linux kernel and GNU projects
work voluntarily.

At the time of writing, Torvalds is employed as a fellow at the Linux Founda-
tion (http.//www.linux-foundation.org/; formerly the Open Source Development
Laboratory, OSDL), a nonprofit consortium of commercial and noncommer-
cial organizations chartered to foster the growth of Linux.

Because there are multiple Linux distributors and because the kernel implement-
ers don’t control the contents of distributions, there is no “standard” commercial
Linux as such. Each Linux distributor’s kernel offering is typically based on a snap-
shot of the mainline (i.e., the Torvalds) kernel at a particular point in time, with a
number of patches applied.

These patches typically provide features that, to a greater or lesser extent, are
deemed commercially desirable, and thus able to provide competitive differentia-
tion in the marketplace. In some cases, these patches are later accepted into the
mainline kernel. In fact, some new kernel features were initially developed by a dis-
tribution company, and appeared in their distribution before eventually being
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integrated into the mainline. For example, version 3 of the Reiserfs journaling file
system was part of some Linux distributions long before it was accepted into the
mainline 2.4 kernel.

The upshot of the preceding points is that there are (mostly minor) differences
in the systems offered by the various Linux distribution companies. On a much
smaller scale, this is reminiscent of the splits in implementations that occurred in
the early years of UNIX. The Linux Standard Base (LSB) is an effort to ensure com-
patibility among the various Linux distributions. To do this, the LSB (http:;//
www.linux-foundation.org/en/LSB) develops and promotes a set of standards for
Linux systems with the aim of ensuring that binary applications (i.e., compiled pro-
grams) can run on any LSB-conformant system.

The binary portability promoted by the LSB contrasts with the source code
portability promoted by POSIX. Source code portability means that we can
write a C program and then successfully compile and run it on any POSIX-
conformant system. Binary compatibility is much more demanding and is gen-
erally not feasible across different hardware platforms. It allows us to compile
a program once for a given hardware platform, and then run that compiled
program on any conformant implementation running on that hardware plat-
form. Binary portability is an essential requirement for the commercial viabil-
ity of independent software vendor (ISV) applications built for Linux.

Summary

The UNIX system was first implemented in 1969 on a Digital PDP-7 minicomputer
by Ken Thompson at Bell Laboratories (part of AT&T). The operating system drew
many ideas, as well as its punned name, from the earlier MULTICS system. By
1973, UNIX had been moved to the PDP-11 mini-computer and rewritten in C, a
programming language designed and implemented at Bell Laboratories by Dennis
Ritchie. Legally prevented from selling UNIX, AT&T instead distributed the com-
plete system to universities for a nominal charge. This distribution included source
code, and became very popular within universities, since it provided a cheap oper-
ating system whose code could be studied and modified by computer science aca-
demics and students.

The University of California at Berkeley played a key role in the development
of the UNIX system. There, Ken Thompson and a number of graduate students
extended the operating system. By 1979, the University was producing its own
UNIX distribution, BSD. This distribution became widespread in academia and
formed the basis for several commercial implementations.

Meanwhile, the breakup of the AT&T monopoly permitted the company to sell
the UNIX system. This resulted in the other major variant of UNIX, System V,
which also formed the basis for several commercial implementations.

Two different currents led to the development of (GNU/) Linux. One of these
was the GNU project, founded by Richard Stallman. By the late 1980s, the GNU
project had produced an almost complete, freely distributable UNIX implementa-
tion. The one part lacking was a working kernel. In 1991, inspired by the Minix ker-
nel written by Andrew Tanenbaum, Linus Torvalds produced a working UNIX
kernel for the Intel x86-32 architecture. Torvalds invited other programmers to
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join him in improving the kernel. Many programmers did so, and, over time, Linux
was extended and ported to a wide variety of hardware architectures.

The portability problems that arose from the variations in UNIX and C imple-
mentations that existed by the late 1980s created a strong pressure for standardiza-
tion. The C language was standardized in 1989 (C89), and a revised standard was
produced in 1999 (C99). The first attempt to standardize the operating system
interface yielded POSIX.1, ratified as an IEEE standard in 1988, and as an ISO stan-
dard in 1990. During the 1990s, further standards were drafted, including various
versions of the Single UNIX Specification. In 2001, the combined POSIX 1003.1-2001
and SUSv3 standard was ratified. This standard consolidates and extends various
earlier POSIX standards and earlier versions of the Single UNIX Specification. In
2008, a less wide-ranging revision of the standard was completed, yielding the com-
bined POSIX 1003.1-2008 and SUSv4 standard.

Unlike most commercial UNIX implementations, Linux separates implementa-
tion from distribution. Consequently, there is no single “official” Linux distribu-
tion. Each Linux distributor’s offering consists of a snapshot of the current stable
kernel, with various patches applied. The LSB develops and promotes a set of stan-
dards for Linux systems with the aim of ensuring binary application compatibility
across Linux distributions, so that compiled applications should be able to run on
any LSB-conformant system running on the same hardware.

Further information

Further information about UNIX history and standards can be found in [Ritchie,
1984], [McKusick et al., 1996], [McKusick & Neville-Neil, 2005], [Libes & Ressler,
1989], [Garfinkel et al., 2003], [Stevens & Rago, 2005], [Stevens, 1999], [Quarter-
mann & Wilhelm, 1993], [Goodheart & Cox, 1994], and [McKusick, 1999].

[Salus, 1994] is a detailed history of UNIX, from which much of the informa-
tion at the beginning of this chapter was drawn. [Salus, 2008] provides a short his-
tory of Linux and other free software projects. Many details of the history of UNIX
can also be found in the online book History of UNIX, written by Ronda Hauben.
This book is available at http://www.dei.isep.ipp. pt/~acc/docs/unix.html. An extremely
detailed timeline showing the releases of various UNIX implementations can be
found at http.//www.levenez.com/unix/ .

[Josey, 2004] provides an overview of the history of the UNIX system and the
development of SUSv3, guidance on how to use the specification, summary tables
of the interfaces in SUSv3, and migration guides for the transitions from SUSv2 to
SUSv3 and C89 to C99.

As well as providing software and documentation, the GNU web site (http://
www.gnu.org/) contains a number of philosophical papers on the subject of free
software. [Williams, 2002] is a biography of Richard Stallman.

Torvalds provides his own account of the development of Linux in [Torvalds &
Diamond, 2001].
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FUNDAMENTAL CONCEPTS

This chapter introduces a range of concepts related to Linux system programming.
Itis intended for readers who have worked primarily with other operating systems,
or who have only limited experience with Linux or another UNIX implementation.

The Core Operating System: The Kernel
The term operating system is commonly used with two different meanings:

e To denote the entire package consisting of the central software managing a
computer’s resources and all of the accompanying standard software tools,
such as command-line interpreters, graphical user interfaces, file utilities, and
editors.

e More narrowly, to refer to the central software that manages and allocates
computer resources (i.e., the CPU, RAM, and devices).

The term kernel is often used as a synonym for the second meaning, and it is with
this meaning of the term operating system that we are concerned in this book.

Although it is possible to run programs on a computer without a kernel, the
presence of a kernel greatly simplifies the writing and use of other programs, and
increases the power and flexibility available to programmers. The kernel does this
by providing a software layer to manage the limited resources of a computer.
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The Linux kernel executable typically resides at the pathname /boot/vmlinuz,
or something similar. The derivation of this filename is historical. On early
UNIX implementations, the kernel was called unix. Later UNIX implementa-
tions, which implemented virtual memory, renamed the kernel as vmunix. On
Linux, the filename mirrors the system name, with the z replacing the final x to
signify that the kernel is a compressed executable.

Tasks performed by the kernel

Among other things, the kernel performs the following tasks:

Chapter 2

Process scheduling: A computer has one or more central processing units
(CPUs), which execute the instructions of programs. Like other UNIX systems,
Linux is a preemptive multitasking operating system, Multitasking means that
multiple processes (i.e., running programs) can simultaneously reside in mem-
ory and each may receive use of the CPU(s). Preemptive means that the rules
governing which processes receive use of the CPU and for how long are deter-
mined by the kernel process scheduler (rather than by the processes them-
selves).

Memory management: While computer memories are enormous by the stan-
dards of a decade or two ago, the size of software has also correspondingly
grown, so that physical memory (RAM) remains a limited resource that the ker-
nel must share among processes in an equitable and efficient fashion. Like
most modern operating systems, Linux employs virtual memory management
(Section 6.4), a technique that confers two main advantages:

-  Processes are isolated from one another and from the kernel, so that one
process can’t read or modify the memory of another process or the kernel.

—  Only part of a process needs to be kept in memory, thereby lowering the
memory requirements of each process and allowing more processes to be
held in RAM simultaneously. This leads to better CPU utilization, since it
increases the likelihood that, at any moment in time, there is at least one
process that the CPU(s) can execute.

Provision of a file system: The kernel provides a file system on disk, allowing files
to be created, retrieved, updated, deleted, and so on.

Creation and termination of processes: The kernel can load a new program into
memory, providing it with the resources (e.g., CPU, memory, and access to
files) that it needs in order to run. Such an instance of a running program is
termed a process. Once a process has completed execution, the kernel ensures
that the resources it uses are freed for subsequent reuse by later programs.

Access to devices: The devices (mice, monitors, keyboards, disk and tape drives,
and so on) attached to a computer allow communication of information
between the computer and the outside world, permitting input, output, or
both. The kernel provides programs with an interface that standardizes and
simplifies access to devices, while at the same time arbitrating access by multiple
processes to each device.



e Networking: The kernel transmits and receives network messages (packets) on
behalf of user processes. This task includes routing of network packets to the
target system.

e Provision of a system call application programming interface (API): Processes can
request the kernel to perform various tasks using kernel entry points known as
system calls. The Linux system call API is the primary topic of this book.
Section 3.1 details the steps that occur when a process performs a system call.

In addition to the above features, multiuser operating systems such as Linux gener-
ally provide users with the abstraction of a virtual private computer; that is, each user
can log on to the system and operate largely independently of other users. For
example, each user has their own disk storage space (home directory). In addition,
users can run programs, each of which gets a share of the CPU and operates in its
own virtual address space, and these programs can independently access devices
and transfer information over the network. The kernel resolves potential conflicts
in accessing hardware resources, so users and processes are generally unaware of
the conflicts.

Kernel mode and user mode

Modern processor architectures typically allow the CPU to operate in at least two
different modes: user mode and kernel mode (sometimes also referred to as supervisor
mode). Hardware instructions allow switching from one mode to the other. Corre-
spondingly, areas of virtual memory can be marked as being part of user space or
kernel space. When running in user mode, the CPU can access only memory that is
marked as being in user space; attempts to access memory in kernel space result in
a hardware exception. When running in kernel mode, the CPU can access both
user and kernel memory space.

Certain operations can be performed only while the processor is operating in
kernel mode. Examples include executing the halt instruction to stop the system,
accessing the memory-management hardware, and initiating device 1/O opera-
tions. By taking advantage of this hardware design to place the operating system in
kernel space, operating system implementers can ensure that user processes are
not able to access the instructions and data structures of the kernel, or to perform
operations that would adversely affect the operation of the system.

Process versus kernel views of the system

In many everyday programming tasks, we are accustomed to thinking about pro-
gramming in a process-oriented way. However, when considering various topics
covered later in this book, it can be useful to reorient our perspective to consider
things from the kernel’s point of view. To make the contrast clear, we now consider
how things look first from a process viewpoint and then from a kernel viewpoint.
A running system typically has numerous processes. For a process, many things
happen asynchronously. An executing process doesn’t know when it will next time
out, which other processes will then be scheduled for the CPU (and in what order),
or when it will next be scheduled. The delivery of signals and the occurrence of
interprocess communication events are mediated by the kernel, and can occur at
any time for a process. Many things happen transparently for a process. A process
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doesn’t know where it is located in RAM or, in general, whether a particular part of
its memory space is currently resident in memory or held in the swap area (a
reserved area of disk space used to supplement the computer’s RAM). Similarly, a
process doesn’t know where on the disk drive the files it accesses are being held; it
simply refers to the files by name. A process operates in isolation; it can’t directly
communicate with another process. A process can’t itself create a new process or
even end its own existence. Finally, a process can’t communicate directly with the
input and output devices attached to the computer.

By contrast, a running system has one kernel that knows and controls every-
thing. The kernel facilitates the running of all processes on the system. The kernel
decides which process will next obtain access to the CPU, when it will do so, and for
how long. The kernel maintains data structures containing information about all
running processes and updates these structures as processes are created, change
state, and terminate. The kernel maintains all of the low-level data structures that
enable the filenames used by programs to be translated into physical locations on
the disk. The kernel also maintains data structures that map the virtual memory of
each process into the physical memory of the computer and the swap area(s) on
disk. All communication between processes is done via mechanisms provided by
the kernel. In response to requests from processes, the kernel creates new pro-
cesses and terminates existing processes. Lastly, the kernel (in particular, device
drivers) performs all direct communication with input and output devices, transfer-
ring information to and from user processes as required.

Later in this book we’ll say things such as “a process can create another pro-
cess,” “a process can create a pipe,” “a process can write data to a file,” and “a pro-
cess can terminate by calling exit().” Remember, however, that the kernel mediates
all such actions, and these statements are just shorthand for “a process can request
that the kernel create another process,” and so on.

Further information

Modern texts covering operating systems concepts and design, with particular ref-
erence to UNIX systems, include [Tanenbaum, 2007], [Tanenbaum & Woodhull,
2006], and [Vahalia, 1996], the last of these containing much detail on virtual mem-
ory architectures. [Goodheart & Cox, 1994] provide details on System V Release 4.
[Maxwell, 1999] provides an annotated listing of selected parts of the Linux 2.2.5
kernel. [Lions, 1996] is a detailed exposition of the Sixth Edition UNIX source
code that remains a useful introduction to UNIX operating system internals.
[Bovet & Cesati, 2005] describes the implementation of the Linux 2.6 kernel.

The Shell

A shell is a special-purpose program designed to read commands typed by a user
and execute appropriate programs in response to those commands. Such a pro-
gram is sometimes known as a command interpreter.

The term login shell is used to denote the process that is created to run a shell
when the user first logs in.
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Whereas on some operating systems the command interpreter is an integral
part of the kernel, on UNIX systems, the shell is a user process. Many different
shells exist, and different users (or, for that matter, a single user) on the same com-
puter can simultaneously use different shells. A number of important shells have
appeared over time:

e Bourne shell (sh): This is the oldest of the widely used shells, and was written by
Steve Bourne. It was the standard shell for Seventh Edition UNIX. The Bourne
shell contains many of the features familiar in all shells: I/O redirection, pipe-
lines, filename generation (globbing), variables, manipulation of environment
variables, command substitution, background command execution, and func-
tions. All later UNIX implementations include the Bourne shell in addition to
any other shells they might provide.

o C shell (csh): This shell was written by Bill Joy at the University of California at
Berkeley. The name derives from the resemblance of many of the flow-control
constructs of this shell to those of the C programming language. The C shell
provided several useful interactive features unavailable in the Bourne shell,
including command history, command-line editing, job control, and aliases.
The C shell was not backward compatible with the Bourne shell. Although the
standard interactive shell on BSD was the C shell, shell scripts (described in a
moment) were usually written for the Bourne shell, so as to be portable across
all UNIX implementations.

e  Korn shell (ksh): This shell was written as the successor to the Bourne shell by
David Korn at AT&T Bell Laboratories. While maintaining backward compati-
bility with the Bourne shell, it also incorporated interactive features similar to
those provided by the C shell.

e Bourne again shell (bash): This shell is the GNU project’s reimplementation of
the Bourne shell. It supplies interactive features similar to those available
in the C and Korn shells. The principal authors of bash are Brian Fox and Chet
Ramey. Bash is probably the most widely used shell on Linux. (On Linux, the
Bourne shell, s, is actually provided by bash emulating sk as closely as possible.)

POSIX.2-1992 specified a standard for the shell that was based on the then cur-
rent version of the Korn shell. Nowadays, the Korn shell and bash both con-
form to POSIX, but provide a number of extensions to the standard, and many
of these extensions differ between the two shells.

The shells are designed not merely for interactive use, but also for the interpretation
of shell scripts, which are text files containing shell commands. For this purpose,
each of the shells has the facilities typically associated with programming lan-
guages: variables, loop and conditional statements, I/O commands, and functions.
Each of the shells performs similar tasks, albeit with variations in syntax. Unless
referring to the operation of a specific shell, we typically refer to “the shell,” with
the understanding that all shells operate in the manner described. Most of the
examples in this book that require a shell use bash, but, unless otherwise noted, the
reader can assume these examples work the same way in other Bourne-type shells.
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Users and Groups
Each user on the system is uniquely identified, and users may belong to groups.

Users

Every user of the system has a unique login name (username) and a corresponding
numeric user ID (UID). For each user, these are defined by a line in the system
password file, /etc/passwd, which includes the following additional information:

e  Group ID: the numeric group ID of the first of the groups of which the user is a
member.

e Home directory: the initial directory into which the user is placed after logging in.

o Login shell: the name of the program to be executed to interpret user commands.

The password record may also include the user’s password, in encrypted form.
However, for security reasons, the password is often stored in the separate shadow
password file, which is readable only by privileged users.

Groups

For administrative purposes—in particular, for controlling access to files and other
system resources—it is useful to organize users into groups. For example, the people
in a team working on a single project, and thus sharing a common set of files,
might all be made members of the same group. In early UNIX implementations, a
user could be a member of only one group. BSD allowed a user to simultaneously
belong to multiple groups, an idea that was taken up by other UNIX implementa-
tions and the POSIX.1-1990 standard. Each group is identified by a single line in
the system group file, /etc/group, which includes the following information:

e  Group name: the (unique) name of the group.
e Group ID (GID): the numeric ID associated with this group.

o  User list: a comma-separated list of login names of users who are members of
this group (and who are not otherwise identified as members of the group by
virtue of the group ID field of their password file record).

Superuser

One user, known as the superuser, has special privileges within the system. The
superuser account has user ID 0, and normally has the login name r00f. On typical
UNIX systems, the superuser bypasses all permission checks in the system. Thus,
for example, the superuser can access any file in the system, regardless of the per-
missions on that file, and can send signals to any user process in the system. The
system administrator uses the superuser account to perform various administrative
tasks on the system.
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Single Directory Hierarchy, Directories, Links, and Files

The kernel maintains a single hierarchical directory structure to organize all files in
the system. (This contrasts with operating systems such as Microsoft Windows,
where each disk device has its own directory hierarchy.) At the base of this hier-
archy is the root directory, named / (slash). All files and directories are children or
further removed descendants of the root directory. Figure 2-1 shows an example of
this hierarchical file structure.

| bash | |vm1inuz | | group | | passwd | include

(java) | .bashrc |
[Gow] (o]

Figure 2-1: Subset of the Linux single directory hierarchy

File types

Within the file system, each file is marked with a #ype, indicating what kind of file it
is. One of these file types denotes ordinary data files, which are usually called
regular or plain files to distinguish them from other file types. These other file types
include devices, pipes, sockets, directories, and symbolic links.

The term file is commonly used to denote a file of any type, not just a regular file.

Directories and links

A directory is a special file whose contents take the form of a table of filenames coupled
with references to the corresponding files. This filename-plus-reference association
is called a link, and files may have multiple links, and thus multiple names, in the
same or in different directories.

Directories may contain links both to files and to other directories. The links
between directories establish the directory hierarchy shown in Figure 2-1.

Every directory contains at least two entries: . (dot), which is a link to the direc-
tory itself, and .. (dot-dot), which is a link to its parent directory, the directory above
it in the hierarchy. Every directory, except the root directory, has a parent. For the
root directory, the dot-dot entry is a link to the root directory itself (thus, /..
equates to /).
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Symbolic links

Like a normal link, a symbolic link provides an alternative name for a file. But
whereas a normal link is a filename-plus-pointer entry in a directory list, a symbolic
link is a specially marked file containing the name of another file. (In other words,
a symbolic link has a filename-plus-pointer entry in a directory, and the file referred
to by the pointer contains a string that names another file.) This latter file is often
called the target of the symbolic link, and it is common to say that the symbolic link
“points” or “refers” to the target file. When a pathname is specified in a system call,
in most circumstances, the kernel automatically dereferences (or synonymously,
Jollows) each symbolic link in the pathname, replacing it with the filename to which
it points. This process may happen recursively if the target of a symbolic link is
itself a symbolic link. (The kernel imposes limits on the number of dereferences to
handle the possibility of circular chains of symbolic links.) If a symbolic link refers
to a file that doesn’t exist, it is said to be a dangling link.

Often hard link and soft link are used as alternative terms for normal and sym-
bolic links. The reasons for having two different types of links are explained in
Chapter 18.

Filenames

On most Linux file systems, filenames can be up to 255 characters long. Filenames
may contain any characters except slashes (/) and null characters (\0o). However, it is
advisable to employ only letters and digits, and the . (period), _ (underscore), and
- (hyphen) characters. This 65-character set, [-._a-zA-Z0-9], is referred to in SUSv3
as the portable filename character set.

We should avoid the use of characters in filenames that are not in the portable
filename character set because those characters may have special meanings within
the shell, within regular expressions, or in other contexts. If a filename containing
characters with special meanings appears in such contexts, then these characters
must be escaped; that is, specially marked—typically with a preceding backslash (\)—
to indicate that they should not be interpreted with those special meanings. In con-
texts where no escape mechanism is available, the filename is not usable.

We should also avoid filenames beginning with a hyphen (-), since such file-
names may be mistaken for options when specified in a shell command.

Pathnames

A pathname is a string consisting of an optional initial slash (/) followed by a series
of filenames separated by slashes. All but the last of these component filenames
identifies a directory (or a symbolic link that resolves to a directory). The last com-
ponent of a pathname may identify any type of file, including a directory. The
series of component filenames preceding the final slash is sometimes referred to as
the directory part of a pathname, while the name following the final slash is some-
times referred to as the file or base part of the pathname.

A pathname is read from left to right; each filename resides in the directory
specified by the preceding part of the pathname. The string .. can be used any-
where in a pathname to refer to the parent of the location so far specified in the
pathname.
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A pathname describes the location of a file within the single directory hier-
archy, and is either absolute or relative:

e An absolute pathname begins with a slash (/) and specifies the location of a file
with respect to the root directory. Examples of absolute pathnames for files in
Figure 2-1 are /home/mtk/.bashrc, /usr/include, and / (the pathname of the root
directory).

e A vrelative pathname specifies the location of a file relative to a process’s current
working directory (see below), and is distinguished from an absolute pathname
by the absence of an initial slash. In Figure 2-1, from the directory usr, the file
types.h could be referenced using the relative pathname include/sys/types.h,
while from the directory avr, the file .bashrc could be accessed using the rela-
tive pathname ../mtk/.bashrc.

Current working directory

Each process has a current working directory (sometimes just referred to as the pro-
cess’s working directory or current directory). This is the process’s “current location”
within the single directory hierarchy, and it is from this directory that relative path-
names are interpreted for the process.

A process inherits its current working directory from its parent process. A
login shell has its initial current working directory set to the location named in the
home directory field of the user’s password file entry. The shell’s current working
directory can be changed with the ¢d command.

File ownership and permissions

Each file has an associated user ID and group ID that define the owner of the file
and the group to which it belongs. The ownership of a file is used to determine the
access rights available to users of the file.

For the purpose of accessing a file, the system divides users into three catego-
ries: the owner of the file (sometimes termed the user of the file), users who are
members of the group matching the file’s group ID (group), and the rest of the
world (other). Three permission bits may be set for each of these categories of user
(making a total of nine permission bits): read permission allows the contents of the
file to be read; write permission allows modification of the contents of the file; and
execute permission allows execution of the file, which is either a program or a script
to be processed by some interpreter (usually, but not always, one of the shells).

These permissions may also be set on directories, although their meanings are
slightly different: read permission allows the contents of (i.e., the filenames in) the
directory to be listed; write permission allows the contents of the directory to be
changed (i.e., filenames can be added, removed, and changed); and execute (some-
times called search) permission allows access to files within the directory (subject to
the permissions on the files themselves).

File /O Model

One of the distinguishing features of the I/O model on UNIX systems is the con-
cept of universality of 1/0. This means that the same system calls (open(), read(),
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write(), close(), and so on) are used to perform 1/O on all types of files, including
devices. (The kernel translates the application’s I/O requests into appropriate file-
system or device-driver operations that perform I/0O on the target file or device.)
Thus, a program employing these system calls will work on any type of file.

The kernel essentially provides one file type: a sequential stream of bytes,
which, in the case of disk files, disks, and tape devices, can be randomly accessed
using the Iseek() system call.

Many applications and libraries interpret the newline character (ASCII code 10
decimal, sometimes also known as linefeed) as terminating one line of text and com-
mencing another. UNIX systems have no end-of-file character; the end of a file is
detected by a read that returns no data.

File descriptors

The 1/O system calls refer to open files using a file descriptor, a (usually small) non-
negative integer. A file descriptor is typically obtained by a call to open(), which
takes a pathname argument specifying a file upon which I/0O is to be performed.

Normally, a process inherits three open file descriptors when it is started by
the shell: descriptor 0 is standard input, the file from which the process takes its
input; descriptor 1 is standard output, the file to which the process writes its output;
and descriptor 2 is standard error, the file to which the process writes error
messages and notification of exceptional or abnormal conditions. In an interactive
shell or program, these three descriptors are normally connected to the terminal.
In the stdio library, these descriptors correspond to the file streams stdin, stdout, and
stderr.

The stdio library

To perform file I/0, C programs typically employ I/O functions contained in the
standard C library. This set of functions, referred to as the stdio library, includes
Jopen(), felose(), scanf(), printf(), fgets(), fputs(), and so on. The stdio functions are
layered on top of the 1/0 system calls (open(), close(), read(), write(), and so on).

We assume that the reader is already familiar with the C standard 1/O (stdio)
functions, and don’t cover them in this book. Further information on the sidio
library can be found in [Kernighan & Ritchie, 1988], [Harbison & Steele,
2002], [Plauger, 1992], and [Stevens & Rago, 2005].

Programs

Programs normally exist in two forms. The first form is source code, human-readable
text consisting of a series of statements written in a programming language such
as C. To be executed, source code must be converted to the second form: binary
machine-language instructions that the computer can understand. (This contrasts
with a script, which is a text file containing commands to be directly processed by a
program such as a shell or other command interpreter.) The two meanings of the
term program are normally considered synonymous, since the step of compiling
and linking converts source code into semantically equivalent binary machine code.
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Filters

A filter is the name often applied to a program that reads its input from stdin, per-
forms some transformation of that input, and writes the transformed data to stdout.
Examples of filters include cat, grep, tr, sort, we, sed, and awk.

Command-line arguments

In G, programs can access the command-line arguments, the words that are supplied
on the command line when the program is run. To access the command-line argu-
ments, the main() function of the program is declared as follows:

int main(int argc, char *argv[])

The arge variable contains the total number of command-line arguments, and the
individual arguments are available as strings pointed to by members of the array
argv. The first of these strings, argu/0], identifies the name of the program itself.

Processes

Put most simply, a process is an instance of an executing program. When a program
is executed, the kernel loads the code of the program into virtual memory, allo-
cates space for program variables, and sets up kernel bookkeeping data structures
to record various information (such as process ID, termination status, user IDs, and
group IDs) about the process.

From a kernel point of view, processes are the entities among which the kernel
must share the various resources of the computer. For resources that are limited,
such as memory, the kernel initially allocates some amount of the resource to the
process, and adjusts this allocation over the lifetime of the process in response to
the demands of the process and the overall system demand for that resource.
When the process terminates, all such resources are released for reuse by other
processes. Other resources, such as the CPU and network bandwidth, are renew-
able, but must be shared equitably among all processes.

Process memory layout

A process is logically divided into the following parts, known as segments:

e  Text: the instructions of the program.
e Data: the static variables used by the program.
e  Heap: an area from which programs can dynamically allocate extra memory.

e  Stack: a piece of memory that grows and shrinks as functions are called and
return and that is used to allocate storage for local variables and function call
linkage information.

Process creation and program execution

A process can create a new process using the fork() system call. The process that
calls fork() is referred to as the parent process, and the new process is referred to as
the child process. The kernel creates the child process by making a duplicate of the
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parent process. The child inherits copies of the parent’s data, stack, and heap seg-
ments, which it may then modify independently of the parent’s copies. (The pro-
gram text, which is placed in memory marked as read-only, is shared by the two
processes.)

The child process goes on either to execute a different set of functions in the
same code as the parent, or, frequently, to use the execve() system call to load and
execute an entirely new program. An execve() call destroys the existing text, data,
stack, and heap segments, replacing them with new segments based on the code of
the new program.

Several related C library functions are layered on top of execve(), each provid-
ing a slightly different interface to the same functionality. All of these functions
have names starting with the string exec, and where the differences don’t matter,
we’ll use the notation exec() to refer generally to these functions. Be aware, how-
ever, that there is no actual function with the name exec().

Commonly, we’ll use the verb fo exec to describe the operation performed
execve() and the library functions layered on top ofit.

Process ID and parent process ID

Each process has a unique integer process identifier (P1D). Each process also has a
parent process identifier (PPID) attribute, which identifies the process that requested
the kernel to create this process.

Process termination and termination status

A process can terminate in one of two ways: by requesting its own termination
using the _exit() system call (or the related ex:t() library function), or by being killed
by the delivery of a signal. In either case, the process yields a termination status, a
small nonnegative integer value that is available for inspection by the parent pro-
cess using the wait() system call. In the case of a call to _exit(), the process explicitly
specifies its own termination status. If a process is killed by a signal, the termination
status is set according to the type of signal that caused the death of the process.
(Sometimes, we’ll refer to the argument passed to _exit() as the exit status of the pro-
cess, as distinct from the termination status, which is either the value passed to
_exit() or an indication of the signal that killed the process.)

By convention, a termination status of 0 indicates that the process succeeded,
and a nonzero status indicates that some error occurred. Most shells make the ter-
mination status of the last executed program available via a shell variable named $2.

Process user and group identifiers (credentials)

Each process has a number of associated user IDs (UIDs) and group IDs (GIDs).
These include:

e Real user ID and real group ID: These identify the user and group to which the
process belongs. A new process inherits these IDs from its parent. A login shell
gets its real user ID and real group ID from the corresponding fields in the sys-
tem password file.
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o Effective user ID and effective group ID: These two IDs (in conjunction with the
supplementary group IDs discussed in a moment) are used in determining the
permissions that the process has when accessing protected resources such as
files and interprocess communication objects. Typically, the process’s effective
IDs have the same values as the corresponding real IDs. Changing the effective IDs
is 2 mechanism that allows a process to assume the privileges of another user
or group, as described in a moment.

o Supplementary group IDs: These IDs identify additional groups to which a pro-
cess belongs. A new process inherits its supplementary group IDs from its par-
ent. A login shell gets its supplementary group IDs from the system group file.

Privileged processes

Traditionally, on UNIX systems, a privileged process is one whose effective user 1D is 0
(superuser). Such a process bypasses the permission restrictions normally applied
by the kernel. By contrast, the term unprivileged (or nonprivileged) is applied to pro-
cesses run by other users. Such processes have a nonzero effective user ID and
must abide by the permission rules enforced by the kernel.

A process may be privileged because it was created by another privileged pro-
cess—for example, by a login shell started by root (superuser). Another way a process
may become privileged is via the set-user-ID mechanism, which allows a process to
assume an effective user ID that is the same as the user ID of the program file that
itis executing.

Capabilities

Since kernel 2.2, Linux divides the privileges traditionally accorded to the super-
user into a set of distinct units called capabilities. Each privileged operation is asso-
ciated with a particular capability, and a process can perform an operation only if it
has the corresponding capability. A traditional superuser process (effective user ID
of 0) corresponds to a process with all capabilities enabled.

Granting a subset of capabilities to a process allows it to perform some of the
operations normally permitted to the superuser, while preventing it from perform-
ing others.

Capabilities are described in detail in Chapter 39. In the remainder of the
book, when noting that a particular operation can be performed only by a privi-
leged process, we’ll usually identify the specific capability in parentheses. Capabil-
ity names begin with the prefix CAP_, as in CAP_KILL.

The init process

When booting the system, the kernel creates a special process called init, the “parent
of all processes,” which is derived from the program file /sbin/init. All processes
on the system are created (using fork()) either by init or by one of its descendants.
The init process always has the process ID 1 and runs with superuser privileges. The
init process can’t be killed (not even by the superuser), and it terminates only when
the system is shut down. The main task of init is to create and monitor a range of
processes required by a running system. (For details, see the init(8) manual page.)
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Daemon processes

A daemon is a special-purpose process that is created and handled by the system
in the same way as other processes, but which is distinguished by the following
characteristics:

e Itislonglived. A daemon process is often started at system boot and remains
in existence until the system is shut down.

e It runs in the background, and has no controlling terminal from which it can
read input or to which it can write output.

Examples of daemon processes include syslogd, which records messages in the sys-
tem log, and Attpd, which serves web pages via the Hypertext Transfer Protocol
(HTTP).

Environment list

Each process has an environment list, which is a set of environment variables that are
maintained within the user-space memory of the process. Each element of this list
consists of a name and an associated value. When a new process is created via
fork(), it inherits a copy of its parent’s environment. Thus, the environment pro-
vides a mechanism for a parent process to communicate information to a child pro-
cess. When a process replaces the program that it is running using exec(), the new
program either inherits the environment used by the old program or receives a
new environment specified as part of the exec() call.

Environment variables are created with the export command in most shells (or
the setenv command in the C shell), as in the following example:

$ export MYVAR='Hello world'

Whenever we present a shell session log showing interactive input and output,
the input text is always boldfaced. Sometimes, we include commentary in the
log in italic text, adding notes about the commands entered or the output
produced.

C programs can access the environment using an external variable (ckar **environ),
and various library functions allow a process to retrieve and modify values in its
environment.

Environment variables are used for a variety of purposes. For example, the
shell defines and uses a range of variables that can be accessed by scripts and pro-
grams executed from the shell. These include the variable HOME, which specifies the
pathname of the user’s login directory, and the variable PATH, which specifies a list
of directories that the shell should search when looking for programs correspond-
ing to commands entered by the user.

Resource limits

Each process consumes resources, such as open files, memory, and CPU time.
Using the setrlimit() system call, a process can establish upper limits on its consump-
tion of various resources. Each such resource limit has two associated values: a soft
limit, which limits the amount of the resource that the process may consume; and a
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hard limit, which is a ceiling on the value to which the soft limit may be adjusted. An
unprivileged process may change its soft limit for a particular resource to any value
in the range from zero up to the corresponding hard limit, but can only lower its
hard limit.

When a new process is created with fork(), it inherits copies of its parent’s
resource limit settings.

The resource limits of the shell can be adjusted using the wlimit command
(Zimit in the C shell). These limit settings are inherited by the child processes that
the shell creates to execute commands.

Memory Mappings

The mmap() system call creates a new memory mapping in the calling process’s virtual
address space.
Mappings fall into two categories:

e A file mapping maps a region of a file into the calling process’s virtual memory.
Once mapped, the file’s contents can be accessed by operations on the bytes in
the corresponding memory region. The pages of the mapping are automati-
cally loaded from the file as required.

e By contrast, an anonymous mapping doesn’t have a corresponding file. Instead,
the pages of the mapping are initialized to 0.

The memory in one process’s mapping may be shared with mappings in other pro-
cesses. This can occur either because two processes map the same region of a file
or because a child process created by fork() inherits a mapping from its parent.

When two or more processes share the same pages, each process may see the
changes made by other processes to the contents of the pages, depending on
whether the mapping is created as private or shared. When a mapping is private,
modifications to the contents of the mapping are not visible to other processes and
are not carried through to the underlying file. When a mapping is shared, modifica-
tions to the contents of the mapping are visible to other processes sharing the same
mapping and are carried through to the underlying file.

Memory mappings serve a variety of purposes, including initialization of a
process’s text segment from the corresponding segment of an executable file,
allocation of new (zero-filled) memory, file I/O (memory-mapped 1/0), and inter-
process communication (via a shared mapping).

Static and Shared Libraries

An object library is a file containing the compiled object code for a (usually logically
related) set of functions that may be called from application programs. Placing
code for a set of functions in a single object library eases the tasks of program creation
and maintenance. Modern UNIX systems provide two types of object libraries:
static libraries and shared libraries.
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Static libraries

Static libraries (sometimes also known as archives) were the only type of library on
early UNIX systems. A static library is essentially a structured bundle of compiled
object modules. To use functions from a static library, we specify that library in the
link command used to build a program. After resolving the various function refer-
ences from the main program to the modules in the static library, the linker
extracts copies of the required object modules from the library and copies these
into the resulting executable file. We say that such a program is statically linked.

The fact that each statically linked program includes its own copy of the object
modules required from the library creates a number of disadvantages. One is that
the duplication of object code in different executable files wastes disk space. A cor-
responding waste of memory occurs when statically linked programs using the
same library function are executed at the same time; each program requires its own
copy of the function to reside in memory. Additionally, if a library function
requires modification, then, after recompiling that function and adding it to the
static library, all applications that need to use the updated function must be
relinked against the library.

Shared libraries

Shared libraries were designed to address the problems with static libraries.

If a program is linked against a shared library, then, instead of copying object
modules from the library into the executable, the linker just writes a record into
the executable to indicate that at run time the executable needs to use that shared
library. When the executable is loaded into memory at run time, a program called
the dynamic linker ensures that the shared libraries required by the executable are
found and loaded into memory, and performs run-time linking to resolve the func-
tion calls in the executable to the corresponding definitions in the shared libraries.
At run time, only a single copy of the code of the shared library needs to be resi-
dent in memory; all running programs can use that copy.

The fact that a shared library contains the sole compiled version of a function
saves disk space. It also greatly eases the job of ensuring that programs employ the
newest version of a function. Simply rebuilding the shared library with the new
function definition causes existing programs to automatically use the new defini-
tion when they are next executed.

Interprocess Communication and Synchronization

A running Linux system consists of numerous processes, many of which operate
independently of each other. Some processes, however, cooperate to achieve their
intended purposes, and these processes need methods of communicating with one
another and synchronizing their actions.

One way for processes to communicate is by reading and writing informa-
tion in disk files. However, for many applications, this is too slow and inflexible.
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Therefore, Linux, like all modern UNIX implementations, provides a rich set of mech-
anisms for interprocess communication (IPC), including the following:

e  signals, which are used to indicate that an event has occurred;

e pipes (familiar to shell users as the | operator) and FIFOs, which can be used to
transfer data between processes;

e sockets, which can be used to transfer data from one process to another, either
on the same host computer or on different hosts connected by a network;

e file locking, which allows a process to lock regions of a file in order to prevent
other processes from reading or updating the file contents;

o message queues, which are used to exchange messages (packets of data) between
processes;

e semaphores, which are used to synchronize the actions of processes; and

o shared memory, which allows two or more processes to share a piece of memory.
When one process changes the contents of the shared memory, all of the other
processes can immediately see the changes.

The wide variety of IPC mechanisms on UNIX systems, with sometimes overlapping
functionality, is in part due to their evolution under different variants of the UNIX
system and the requirements of various standards. For example, FIFOs and UNIX
domain sockets essentially perform the same function of allowing unrelated pro-
cesses on the same system to exchange data. Both exist in modern UNIX systems
because FIFOs came from System V, while sockets came from BSD.

Signals

Although we listed them as a method of IPC in the previous section, signals are
more usually employed in a wide range of other contexts, and so deserve a longer
discussion.

Signals are often described as “software interrupts.” The arrival of a signal
informs a process that some event or exceptional condition has occurred. There
are various types of signals, each of which identifies a different event or condition.
Each signal type is identified by a different integer, defined with symbolic names of
the form SIGxxxx.

Signals are sent to a process by the kernel, by another process (with suitable
permissions), or by the process itself. For example, the kernel may send a signal to
a process when one of the following occurs:

e the user typed the interrupt character (usually Control-C) on the keyboard;
e one of the process’s children has terminated;
e atimer (alarm clock) set by the process has expired; or

e the process attempted to access an invalid memory address.

Within the shell, the kill command can be used to send a signal to a process. The
kill() system call provides the same facility within programs.
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When a process receives a signal, it takes one of the following actions, depend-
ing on the signal:

e itignores the signal;
e itis killed by the signal; or

e itis suspended until later being resumed by receipt of a special-purpose signal.

For most signal types, instead of accepting the default signal action, a program can
choose to ignore the signal (useful if the default action for the signal is something
other than being ignored), or to establish a signal handler. A signal handler is a
programmer-defined function that is automatically invoked when the signal is
delivered to the process. This function performs some action appropriate to the
condition that generated the signal.

In the interval between the time it is generated and the time it is delivered, a
signal is said to be pending for a process. Normally, a pending signal is delivered as
soon as the receiving process is next scheduled to run, or immediately if the pro-
cess is already running. However, it is also possible to block a signal by adding it to
the process’s signal mask. If a signal is generated while it is blocked, it remains
pending until it is later unblocked (i.e., removed from the signal mask).

Threads

In modern UNIX implementations, each process can have multiple threads of exe-
cution. One way of envisaging threads is as a set of processes that share the same
virtual memory, as well as a range of other attributes. Each thread is executing the
same program code and shares the same data area and heap. However, each thread
has it own stack containing local variables and function call linkage information.

Threads can communicate with each other via the global variables that they
share. The threading API provides condition variables and mutexes, which are primi-
tives that enable the threads of a process to communicate and synchronize their
actions, in particular, their use of shared variables. Threads can also communicate
with one another using the IPC and synchronization mechanisms described in
Section 2.10.

The primary advantages of using threads are that they make it easy to share
data (via global variables) between cooperating threads and that some algorithms
transpose more naturally to a multithreaded implementation than to a multiprocess
implementation. Furthermore, a multithreaded application can transparently take
advantage of the possibilities for parallel processing on multiprocessor hardware.

Process Groups and Shell Job Control

Each program executed by the shell is started in a new process. For example, the
shell creates three processes to execute the following pipeline of commands (which
displays a list of files in the current working directory sorted by file size):

$ 1s -1 | sort -ksn | less
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All major shells, except the Bourne shell, provide an interactive feature called job
control, which allows the user to simultaneously execute and manipulate multiple
commands or pipelines. In job-control shells, all of the processes in a pipeline are
placed in a new process group or job. (In the simple case of a shell command line con-
taining a single command, a new process group containing just a single process is
created.) Each process in a process group has the same integer process group
identifier, which is the same as the process ID of one of the processes in the group,
termed the process group leader.

The kernel allows for various actions, notably the delivery of signals, to be per-
formed on all members of a process group. Job-control shells use this feature to
allow the user to suspend or resume all of the processes in a pipeline, as described
in the next section.

Sessions, Controlling Terminals, and Controlling Processes

A session is a collection of process groups (jobs). All of the processes in a session
have the same session identifier. A session leader is the process that created the ses-
sion, and its process ID becomes the session ID.

Sessions are used mainly by job-control shells. All of the process groups cre-
ated by a job-control shell belong to the same session as the shell, which is the ses-
sion leader.

Sessions usually have an associated controlling terminal. The controlling termi-
nal is established when the session leader process first opens a terminal device. For
a session created by an interactive shell, this is the terminal at which the user
logged in. A terminal may be the controlling terminal of at most one session.

As a consequence of opening the controlling terminal, the session leader
becomes the controlling process for the terminal. The controlling process receives a
SIGHUP signal if a terminal disconnect occurs (e.g., if the terminal window is closed).

At any point in time, one process group in a session is the foreground process
group ( foreground job), which may read input from the terminal and send output to
it. If the user types the interrupt character (usually Control-C) or the suspend character
(usually Control-Z) on the controlling terminal, then the terminal driver sends a signal
that kills or suspends (i.e., stops) the foreground process group. A session can have
any number of background process groups (background jobs), which are created by ter-
minating a command with the ampersand (&) character.

Job-control shells provide commands for listing all jobs, sending signals to jobs,
and moving jobs between the foreground and background.

Pseudoterminals

A pseudoterminal is a pair of connected virtual devices, known as the master and
slave. This device pair provides an IPC channel allowing data to be transferred in
both directions between the two devices.

The key point about a pseudoterminal is that the slave device provides an interface
that behaves like a terminal, which makes it possible to connect a terminal-oriented
program to the slave device and then use another program connected to the mas-
ter device to drive the terminal-oriented program. Output written by the driver
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program undergoes the usual input processing performed by the terminal driver
(for example, in the default mode, a carriage return is mapped to a newline) and is
then passed as input to the terminal-oriented program connected to the slave. Any-
thing that the terminal-oriented program writes to the slave is passed (after per-
forming all of the usual terminal output processing) as input to the driver program.
In other words, the driver program is performing the function normally performed
by the user at a conventional terminal.

Pseudoterminals are used in a variety of applications, most notably in the
implementation of terminal windows provided under an X Window System login
and in applications providing network login services, such as telnet and ssh.

Date and Time
Two types of time are of interest to a process:

e Real time is measured either from some standard point (calendar time) or from
some fixed point, typically the start, in the life of a process (elapsed or wall clock
time). On UNIX systems, calendar time is measured in seconds since midnight
on the morning of January 1, 1970, Universal Coordinated Time (usually
abbreviated UTC), and coordinated on the base point for timezones defined
by the longitudinal line passing through Greenwich, England. This date, which
is close to the birth of the UNIX system, is referred to as the Epoch.

o Process time, also called CPU time, is the total amount of CPU time that a process
has used since starting. CPU time is further divided into system CPU time, the
time spent executing code in kernel mode (i.e., executing system calls and per-
forming other kernel services on behalf of the process), and user CPU time, the
time spent executing code in user mode (i.e., executing normal program code).

The time command displays the real time, the system CPU time, and user CPU time
taken to execute the processes in a pipeline.

Client-Server Architecture

At various points in this book, we discuss the design and implementation of client-
server applications.
A client-server application is one that is broken into two component processes:

e aclient, which asks the server to carry out some service by sending it a request
message; and

e aserver, which examines the client’s request, performs appropriate actions, and
then sends a response message back to the client.

Sometimes, the client and server may engage in an extended dialogue of requests
and responses.

Typically, the client application interacts with a user, while the server applica-
tion provides access to some shared resource. Commonly, there are multiple
instances of client processes communicating with one or a few instances of the
Server process.
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The client and server may reside on the same host computer or on separate
hosts connected via a network. To communicate with one another, the client and
server use the IPC mechanisms discussed in Section 2.10.

Servers may implement a variety of services, such as:

e providing access to a database or other shared information resource;
e providing access to a remote file across a network;

e encapsulating some business logic;

e providing access to a shared hardware resource (e.g., a printer); or

e serving web pages.

Encapsulating a service within a single server is useful for a number of reasons,
such as the following:

e Efficiency: It may be cheaper to provide one instance of a resource (e.g., a
printer) that is managed by a server than to provide the same resource locally
on every computer.

o Control, coordination, and security: By holding a resource (especially an informa-
tion resource) at a single location, the server can coordinate access to the
resource (e.g., so that two clients don’t simultaneously update the same piece
of information) or secure it so that it is made available to only selected clients.

o Operation in a heterogeneous environment: In a network, the various clients, and
the server, can be running on different hardware and operating system
platforms.

Realtime

Realtime applications are those that need to respond in a timely fashion to input.
Frequently, such input comes from an external sensor or a specialized input device,
and output takes the form of controlling some external hardware. Examples of
applications with realtime response requirements include automated assembly
lines, bank ATMs, and aircraft navigation systems.

Although many realtime applications require rapid responses to input, the
defining factor is that the response is guaranteed to be delivered within a certain
deadline time after the triggering event.

The provision of realtime responsiveness, especially where short response
times are demanded, requires support from the underlying operating system. Most
operating systems don’t natively provide such support because the requirements of
realtime responsiveness can conflict with the requirements of multiuser time-
sharing operating systems. Traditional UNIX implementations are not realtime
operating systems, although realtime variants have been devised. Realtime variants
of Linux have also been created, and recent Linux kernels are moving toward full
native support for realtime applications.

POSIX.1b defined a number of extensions to POSIX.1 for the support of real-
time applications. These include asynchronous 1/O, shared memory, memory-
mapped files, memory locking, realtime clocks and timers, alternative scheduling
policies, realtime signals, message queues, and semaphores. Even though they
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don’t strictly qualify as realtime, most UNIX implementations now support some
or all of these extensions. (During the course of this book, we describe those fea-
tures of POSIX.1b that are supported by Linux.)

In this book, we use the term real time to refer to the concept of calendar or
elapsed time, and the term realtime to denote an operating system or applica-
tion providing the type of responsiveness described in this section.

The /proc File System

Like several other UNIX implementations, Linux provides a /proc file system,
which consists of a set of directories and files mounted under the /proc directory.

The /proc file system is a virtual file system that provides an interface to kernel
data structures in a form that looks like files and directories on a file system. This
provides an easy mechanism for viewing and changing various system attributes. In
addition, a set of directories with names of the form /proc/PID, where PID is a pro-
cess ID, allows us to view information about each process running on the system.

The contents of /proc files are generally in human-readable text form and can
be parsed by shell scripts. A program can simply open and read from, or write to,
the desired file. In most cases, a process must be privileged to modify the contents
of files in the /proc directory.

As we describe various parts of the Linux programming interface, we’ll also
describe the relevant /proc files. Section 12.1 provides further general information
on this file system. The /proc file system is not specified by any standards, and the
details that we describe are Linux-specific.

Summary

In this chapter, we surveyed a range of fundamental concepts related to Linux sys-
tem programming. An understanding of these concepts should provide readers
with limited experience on Linux or UNIX with enough background to begin
learning system programming.
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SYSTEM PROGRAMMING
CONCEPTS

This chapter covers various topics that are prerequisites for system programming.
We begin by introducing system calls and detailing the steps that occur during their
execution. We then consider library functions and how they differ from system calls,
and couple this with a description of the (GNU) C library.

Whenever we make a system call or call a library function, we should always
check the return status of the call in order to determine if it was successful. We
describe how to perform such checks, and present a set of functions that are used
in most of the example programs in this book to diagnose errors from system calls
and library functions.

We conclude by looking at various issues related to portable programming,
specifically the use of feature test macros and the standard system data types
defined by SUSv3.

System Calls

A system call is a controlled entry point into the kernel, allowing a process to
request that the kernel perform some action on the process’s behalf. The kernel
makes a range of services accessible to programs via the system call application
programming interface (API). These services include, for example, creating a
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new process, performing 1/0, and creating a pipe for interprocess communica-
tion. (The syscalls(2) manual page lists the Linux system calls.)

Before going into the details of how a system call works, we note some general

points:

A system call changes the processor state from user mode to kernel mode, so
that the CPU can access protected kernel memory.

The set of system calls is fixed. Each system call is identified by a unique number.
(This numbering scheme is not normally visible to programs, which identify